

Slide Rule Guide

Authors
Mario G. Salvadori and Jerome H. Weiner Colombia University

Editor

Joseph L. Leon
Data-Guide, Inc.
Copyright 1956 by Data-Guide, Inc.
World Copyright Reserved 1956
Reformatted by Brian Dunn - BD Tech Concepts LLC

Contents

I READING THE SLIDE RULE SCALES 1
II LOCATION OF THE DECIMAL POINT IN THE ANSWER 5
III MULTIPLICATION 8
IV DIVISION 11
V COMBINED MULTIPLICATION AND DIVISION 12
VI PROPORTIONS ON THE SLIDE RULE 14
VII FOLDED SCALES 16
VIII RECIPROCAL (or INVERSE) SCALES 18
IX COMBINED OPERATIONS - FOLDED AND INVERSE SCALES 20
X SQUARES 21
XI CUBES 23
XII SQUARE ROOTS 24
XIII CUBE ROOTS 27
XIV COMBINED OPERATIONS: SQUARES OR SQUARE ROOTS 29
XV LOGARITHMS 32
XVI TRIGONOMETRIC FUNCTIONS 34
XVII LOG LOG SCALES 40
A GLOSSARY 43
B ORIGINAL DOCUMENT 44

Preface

This is a reformatted version of a document which was copyrighted in 1956. There is no record in the U.S. Copyright Office of this copyright being updated. The original company's phone number is disconnected, and the original editor and owner of the company has passed away. So far as we can tell, this document is now in the public domain.

This reformatted version is based on a low resolution scan. Image processing enhancements were performed to ready the image for optical character recognition software. Sections at a time were isolated and fed to the OCR software. The resulting text was assembled into one document. OCR mistakes were then located and corrected. Original text was preserved in almost every instance.

The layout has been changed to a much more readable format. Mathematics were typeset with small modifications to improve clarity, such as the use of powers of ten notation. A few typographic flaws in the original were corrected, such as square-root symbols which did not always extend as far as necessary. Finally, two transposed digits were found and corrected in the answers in the log-log section.

For a list of abbreviations, see Appendix A.
For a grayscale version of the original document, see Appendix B.

Chapter I

READING THE SLIDE RULE SCALES

I-A THE DECIMAL POINT (d.p.)

There is no way of indicating the position of the d.p. in a number read on a slide rule scale. Only the sequence of significant digits is indicated.

I-B SIGNIFICANT DIGITS (s.d.'s)

in a number are the first non-zero digit and those following it, up to and including the last non-zero digit.

Ex: s.d.'s in italics: 600, 450, 40500, 0.0600. 0.6020, 0.00160060 .

Thus the numbers $10,500,1,050$, and .00105 are treated as the same number consisting only of the three s.d.'s 1-0-5. Likewise . $002, .02,2,200,2,000$, etc. are treated as a number with the single s.d. " 2 ".

NOTE: Numbers may be expressed to three places using zeros when necessary since slide rule scales can usually be read accurately to just three places.

Ex: 2 may be written 2-0-0; 69 as 6-9-0; etc.

For the location of the d.p. in the answer see Section II on page 5.

I-C PRIMARY MARKS

PRIMARY MARKS AND THE FIRST SIGNIFICANT DIGIT

The ten primary marks on each of the scales in Fig. 1 are labeled with the largest numbers (1, 2, 3, 4, 5, 6, 7, 8, 9, 1) and divide the length of a scale into nine primary spaces. The scale may run the length of the rule (C scale) or may be repeated several times (A and K scales) as seen on your slide rule.

A NUMBER WITH ONE SIGNIFICANT DIGIT

A number with one significant digit is located at the corresponding primary mark.

Ex: No.s 1-0-0, 2-0-0, 3-0-0, etc. are located at primary marks 1. 2, 3, etc.

I-D SECONDARY MARKS

SECONDARY MARKS AND THE SECOND SIGNIFICANT DIGIT

Secondary marks (the heavy lines in Fig. 1) form the major divisions of the space between two consecutive primary marks and may vary in number. Note in Fig. 1 and on your slide rule that nine secondary marks form ten secondary spaces. Each space is then equal to one unit in the second place of a number and s.d.'s 1 to 9 can be located on secondary marks. Four marks form only five secondary spaces, each space representing two units in the second place. This means that even digits $(2,4,6,8)$ are located on marks and odd digits $(1,3,5,7,9)$ are located midway between marks.

A NUMBER WITH TWO SIGNIFICANT DIGITS

A number with two significant digits is located at the secondary mark or in the secondary space representing the second digit following the primary mark that represents the first digit.

Ex: 1. No. 1-8-0 is located on each scale at the eighth secondary mark following primary mark 1.

Ex: 2. No. 2-3-0 is located on each scale at the third secondary mark after primary mark 2.

Ex: 3. No. 6-2-0 on scale K is located at the first secondary mark after primary mark 6 .

Ex: 4. 7-5-0 on scale K is located halfway between second secondary mark (7-4-0) and third secondary mark (7-6-0).

I-E TERTIARY MARKS

TERTIARY MARKS AND THE THIRD DIGIT

Tertiary marks (the thin lines in Fig. 1) divide the space between two consecutive secondary marks.

A NUMBER WITH THREE SIGNIFICANT DIGITS

A number with three significant digits is located at the corresponding tertiary mark or in the tertiary space following the second digit position.

Ex: 5. No. 1-3-2. On scale C it is located at the second tertiary mark following position 1-3-0. On scale A it is located at the first tertiary mark following position 1-3-0, since each space is valued two units. On scale $K, 1-3-2$ is estimated two-fifths of the way between 1-3-0 and the next tertiary mark 1-3-5.

Ex: 6. No. 8-5-7. On scale C it is located two-fifths of the way between the center tertiary mark 8-5-5 and mark 8-6-0. On scale $A, 8-5-7$ is estimated at a point seven-tenths of the way between 8-5-0 and 8-6-0 since the entire space is equivalent to 10 units in the third place. On scale K first locate 8-5-0 midway between marks $8-4-0$ and 8-6-0. Then estimate a point seven-tenths of the way between 8-5-0 and 8-6-0 to locate 8-5-7.

Ex: 7. No. 9-0-3. NOTE: When the second digit is zero the number is always located in the space between the appropriate primary mark and first secondary mark following it. No. 9-0-3. On scale C, located three-fifths of the way between primary mark 9 (9-0-0) and the first tertiary mark (9-0-5). On scale A, since there are no tertiary marks, it is located three-tenths of the way between primary mark 9 (9-0-0) and the first secondary mark (9-1-0). On scale K. first estimate 9-1-0; then estimate $9-0-3$ at a point three-tenths of the distance between 9-0-0 and 9-1-0.

I-F THE FOURTH DIGIT OF A NUMBER

can be located only on that portion of a scale containing ten tertiary spaces.

Ex: 8. No. 1-5-5-8 is located on scale C eight-tenths of the way between 1-5-5-0 and 1-5-6-0.

Ex: 9. No. 1-2-0-2. NOTE: When the third digit is zero, the number is always located in the space between the appropriate secondary mark and the first tertiary mark following it. No. $1-2-0-2$ on scale C is two-tenths of the way between 1-2-0-0 and 1-2-1-0.

I-G IF A NUMBER HAS MORE SIGNIFICANT DIGITS THAN CAN BE LOCATED ACCURATELY ON A GIVEN SCALE

it is first rounded off. See Section II on page 5.

Table I.1: SUMMARY OF VARIATIONS IN SLIDE RULE SCALE DIVISIONS

MARKS	SPACES	SPACE / VALUE	DIGIT LOCATION
9	10	1 unit	All digits located on marks.
4	5	2 units	$2,4,6,8$ on marks; $1,3,5,7,9$ half-way between marks.
1	2	5 units	5 on the mark; 1 to 4 and 6 to 9 estimated in space left or right of the mark. 0
1	10 units	All digits estimated by approximate division of the space into ten parts.	

Chapter II

LOCATION OF THE DECIMAL POINT IN THE ANSWER

Found by obtaining an approximate answer (AA) as follows:

1. ROUND OFF. Set all s.d.'s but the first equal to " 0 ".

Ex: 1340 becomes $1000 ; .0609 \rightarrow .06 ; 53.65 \rightarrow 50 ; .003006 \rightarrow .003$
NOTE: Increase the first s.d. by one unit if the second is five or more.

$$
\text { Ex: } 4.62 \rightarrow 5 ; .987 \rightarrow 1.0
$$

2. CONVERT TO POWERS OF TEN.

POWERS OF TEN:
$10^{0}=1 ; 10^{1}=10 ; 10^{2}=100 ; 10^{3}=1000 ; 10^{-1}=0.1 ; 10^{-2}=0.01 ; 10^{-3}=0.001 ;$ etc.
NOTE: Negative powers of ten are the reciprocals of the corresponding powers of ten.
Ex: $10^{-2}=1 / 10^{2}=1 / 100=.01$

CONVERSION FORM:

Numbers are written with one (or two) s.d.'s to the left of the d.p.

$$
\text { Ex: } 300=3 \times 10 \times 10=3 \times 10^{2}
$$

The integer is called the multiplier. The exponent of ten is the power.
Numbers > 10: Shift the d.p. "m" places left, multiply by 10.

$$
\text { Ex: } 500=5 \times 10^{2}, 6000=6 \times 10^{3}
$$

Numbers < 1: Shift the d.p. "m" places right and multiply by 10^{-m}.

$$
\text { Ex: } 0.06=6 \times 10^{-2}, 0.0030=3 \times 10^{-3}
$$

3. PERFORM INDICATED OPERATIONS.

MULTIPLICATION:
$\left(N_{1} \times 10^{x}\right)\left(N_{2} \times 10^{y}\right)=\left(N_{1} \times N_{2}\right)\left(10^{x+y}\right)$.
Exponents are added algebraically.

Ex: $\left(6 \times 10^{2}\right)\left(3 \times 10^{3}\right)=\left(18 \times 10^{5}\right)$
Ex: $\left(4 \times 10^{3}\right)\left(3 \times 10^{-2}\right)=\left(12 \times 10^{1}\right)$
Ex: $\left(7 \times 10^{1}\right)\left(2 \times 10^{-4}\right)=\left(14 \times 10^{-3}\right)$

DIVISION:

$\left(N_{1} \times 10^{x}\right) \div\left(N_{2} \times 10^{y}\right)=\left(N_{1} \div N_{2}\right)\left(10^{x-y}\right)$.
Exponents are subtracted algebraically.

$$
\text { Ex: }\left(6 \times 10^{3}\right) \div\left(3 \times 10^{2}\right)=\left(2 \times 10^{1}\right)
$$

Ex: $\left(8 \times 10^{4}\right) \div\left(4 \times 10^{4}\right)=\left(2 \times 10^{0}\right)=2$
Ex: $\left(9 \times 10^{1}\right) \div\left(3 \times 10^{-5}\right)=\left(3 \times 10^{1-(-5)}\right)=\left(3 \times 10^{6}\right)$

POWERS:

$\left(N \times 10^{x}\right)^{y}=\left(N^{y}\right)\left(10^{x y}\right)$.
Exponents are multiplied algebraically.
Ex: $\left(2 \times 10^{3}\right)^{2}=\left(2^{2} \times 10^{3 \times 2}\right)=\left(4 \times 10^{6}\right)$

$$
\text { Ex: }\left(2 \times 10^{-3}\right)^{3}=\left(8 \times 10^{-9}\right)
$$

ROOTS:

$\sqrt[y]{\left(N \times 10^{x}\right)}=\left(\sqrt[y]{N} \times 10^{x / y}\right)$.
Exponents are divided algebraically.
Ex: $\sqrt{400}=\sqrt{4 \times 10^{2}}=\sqrt{4} \times 10^{2 / 2}=2 \times 10^{1}$
Ex: $\sqrt{.0004}=\sqrt{\left(4 \times 10^{-4}\right)}=\left(2 \times 10^{-2}\right)$
Ex: $\sqrt[3]{27,000}=\sqrt[3]{\left(27 \times 10^{3}\right)}=\left(3 \times 10^{1}\right)$
4. CONVERT ANSWERS BACK TO DECIMAL NOTATION.
$\left(N \times 10^{m}\right)$: Shift the decimal point " m " places right.

$$
\text { Ex: }\left(6 \times 10^{3}\right)=6000
$$

Ex: $\left(5.4 \times 10^{1}\right)=54$
$\left(N \times 10^{-m}\right)$: Shift decimal point " m " places left.

$$
\text { Ex: }\left(7.14 \times 10^{-2}\right)=0.0714
$$

$$
\text { Ex: }\left(.0600 \times 10^{-1}\right)=.006
$$

COMBINED OPERATIONS:

Ex:

$$
\frac{3.02 \times 120 \times \sqrt{392}}{1.15 \times(30.6)^{2}}
$$

AA:

$$
\begin{aligned}
\frac{\left(3 \times 10^{0}\right)\left(1 \times 10^{2}\right)\left(\sqrt{\left(4 \times 10^{2}\right)}\right)}{\left(1 \times 10^{0}\right)\left(3 \times 10^{1}\right)^{2}} & = \\
\frac{3 \times 1 \times 2}{1 \times 9} \times 10^{\left(0+2+\frac{2}{2}-0-(1 \times 2)\right)} & = \\
\left(\frac{2}{3} \times 10^{1}\right) & =6.67
\end{aligned}
$$

Chapter III

MULTIPLICATION

III-A SCALES USED

The C on the slide and the D on the body extend the length of the rule. The left and right " 1 " marks are called the left and right C and D indices. ($L C 1, R C 1 ; L D 1, R D 1$)

III-B SLIDE RULE OPERATION (SRO)

$N_{1} \times N_{2}=P$: Set the left C index over the first number N_{1} on the D scale. Move the hairline (HLN) to the second number N_{2} on the C scale. Read the product P under the hairline on the D scale.

Ex: 2×3

SRO: Set LC1 over D2. Move HLN to C3. Read product under the HLN at D6.
ANS: 6.
NOTE: If in the second step, N_{2} cannot be positioned on the C scale, set the right C index over N_{1} instead.

Ex: 2×9
SRO: If $L C 1$ is set over $D 2, C 9$ is off scale; therefore, set $R C 1$ over D2. Move $H L N$ to C9. Read product under HLN at D1-8.

ANS: 18

III-C COMPLETE OPERATION

Ex: 21×320
AA: Round off and express as powers of ten; $21 \rightarrow 20=\left(2 \times 10^{1}\right) ; 320 \rightarrow 300=$ $\left(3 \times 10^{2}\right)$. Perform the indicated operation; multiply: $\left(2 \times 10^{1}\right) \times\left(3 \times 10^{2}\right)=$ $\left(6 \times 10^{3}\right)=6000$.

SRO: Set LC1 on D2-1. Move HLN to C3-2. Read the product under the HLN at D6-7-2. ANS: Since $A A=6000$, the true answer is 6,720 .

Ex: 0.0855×4120
AA: $\left(9 \times 10^{-2}\right) \times\left(4 \times 10^{3}\right)=\left(36 \times 10^{1}\right)=360$
SRO: RC1 on D8-5-5, HLN to C4-1-2. Product under HLN at D3-5-2.
ANS: 352

Ex: 0.442×11.6
AA: $\left(4 \times 10^{-1}\right) \times\left(1 \times 10^{1}\right)=\left(4 \times 10^{0}\right)=4$
SRO: LC1 on D4-4-2, HLN to C1-1-6. Product under HLN at D5-1-2.
ANS: 5.12

III-D PERCENTAGES

$x \%$ of $N=(x) \times(N) \times\left(10^{-2}\right)$.

Ex: 50% of $12=50 \times 12 \times 10^{-2}=600 \times 10^{-2}=6$

Ex: 6.4% of .036
AA: $6 \times\left(4 \times 10^{-2}\right) \times 10^{-2}=\left(24 \times 10^{-4}\right)=.0024$
SRO: Set RC1 over D6-4. Move HLN to C3-6. Read under HLN, D2-3.
ANS: 0.0023

III-E CONTINUED PRODUCTS

$N_{1} \times N_{2} \times N_{3}=P$.

SRO: Multiply the first two factors $\left(N_{1} \times N_{2}=P_{a}\right)$. Multiply this partial product by the next factor $\left(P_{a} \times N_{3}=P_{b}\right)$. Continue multiplying each partial product by the next factor until the final product is obtained.

Ex: $6.4 \times .088 \times 12.3$
AA: $\left.6 \times\left(9 \times 10^{-2}\right) \times\left(1 \times 10^{1}\right)\right)=5.4$
SRO: It is not necessary to read any of the partial products. Set $R C 1$ over D6-4. Move $H L N$ to C8-8. Bring LC1 under the HLN. Move HLN to C1-2-3. The final product is under HLN at D6-9.

ANS: 6.9

Chapter IV

DIVISION

IV-A SCALES USED

are C and D.

IV-B SRO

$N_{1} \div N_{2}=Q$. Set hairline over the numerator N_{1} on D scale. Bring the denominator N_{2} on the C scale under the hairline. Read quotient Q under whichever C index falls on the D scale.

Ex: $6 \div 3$
SRO: Set HLN on D6. Bring C3 under HLN. Read quotient under LC1 at D2.
ANS: 2

Ex: $62 \div 305$
AA: $\left(6 \times 10^{1}\right) \div\left(3 \times 10^{2}\right)=\left(2 \times 10^{-1}\right)=0.2$
SRO: Set HLN on 05.2. Bring C3-0-5 under HLN. Read quotient under LC1 at D2-0-3.
ANS: 0.203

Ex: $17.55 \div 0.00203$
AA: $\left(2 \times 10^{1}\right) \div\left(2 \times 10^{-3}\right)=\left(1 \times 10^{4}\right)=10,000$
SRO: HLN on D1-7-5-5. Bring C2-0-3 under HLN. Under RC1 read D8-6-4.
ANS: 8,640

Chapter V

COMBINED MULTIPLICATION AND DIVISION

V-A ONE FACTOR IN NUMERATOR OR DENOMINATOR

Perform sequence multiplication then division.
Form: $N_{1} \times N_{2} \times N_{3} \times \cdots \div N_{d}$
Or: $\left(N_{n} \div N_{1}\right) \times N_{2} \times N_{3} \ldots$

V-B SEVERAL FACTORS IN NUMERATOR AND DENOMINATOR

Perform multiplication and division operations alternately whenever possible since the least number of slide rule motions will then be required.

Form:

$$
\frac{N_{1} \times N_{2}}{N_{3} \times N_{4}}
$$

Perform as: $N_{1} \div N_{3} \times N_{2} \div N_{4}$

Form:

$$
\frac{N_{1} \times N_{2} \times N_{3} \times N_{4}}{N_{5} \times N_{6}}
$$

Perform as: $N_{1} \times N_{2} \div N_{5} \times N_{3} \div N_{6} \times N_{4}$

Form:

$$
\frac{N_{1} \times N_{2}}{N_{3} \times N_{4} \times N_{5}}
$$

Perform as: $N_{1} \div N_{3} \times N_{2} \div N_{4} \div N_{5}$

Ex:

$$
\frac{2.02 \times 120 \times 0.0925}{1.15 \times 0.81}
$$

AA:

$$
\frac{2 \times\left(1 \times 10^{2}\right) \times\left(9 \times 10^{-2}\right)}{1 \times\left(8 \times 10^{-1}\right)}=18 \div 8 \times 10^{1} \cong 20
$$

SRO: It is not necessary to read any intermediate results. Perform as 2-0-2 $\div 1-1-5 \times$ $1-2-0 \div 8-1 \times 9-2-5$.

1. Divide: Set HLN on D2-0-2. Bring C1-1-5 under HLN.
2. Multiply: Move HLN to C1-2-0.
3. Divide: Bring C8-1-0 under HLN.
4. Multiply: Move bin to C9-2-5.
5. Read under HLN, D2-4-1.

ANS: 24.1
(See also Section VII on page 16.)

Chapter VI

PROPORTIONS ON THE SLIDE RULE

VI-A PRINCIPLE

Any pair of numbers set opposite each other on the C and D (or $C F$ and $D F$) scales are in the same proportion as any other pair of numbers found opposite each other along the entire length of the scales.

Ex: Set $C 1$ over $D 2$; the proportion is 1 to 2 (written also $1 / 2$ or 1:2); read on the scales $C 2$ opposite $D 4, C 3$ opposite $D 6$, etc.

VI-B FORMATION OF PROPORTIONS

A whole number may be divided by 1 .

$$
\text { Ex: } 6=2.6 / x \text { solve as } 6 / 1=2.6 / x
$$

Any factor in the numerator (denominator) of one ratio may be transferred to the denominator (numerator) of the other.

$$
\text { Ex: } 6=\frac{2.4 \times 9.4}{x} \text { solve as } \frac{6}{9.4}=\frac{2.4}{x} \text { or } \frac{x}{2.4}=\frac{9.4}{6} ; \text { etc. }
$$

VI-C MULTIPLE PROPORTIONS

Ex:

$$
\frac{.0202}{.182}=\frac{x}{.3}=\frac{4.5}{y} \quad \frac{(\text { Set numerators on } C)}{(\text { Set denominators on } D)}
$$

AA:
$x=\left(2 \times 10^{-2}\right) \times\left(3 \times 10^{-1}\right) \div\left(2 \times 10^{-1}\right)=\left(3 \times 10^{-2}\right)=.03$
$y=(5) \times\left(2 \times 10^{-1}\right) \div\left(2 \times 10^{-2}\right)=\left(5 \times 10^{1}\right)=50$
SRO: Set C2-0-2 over D1-8-2. Move HLN to D3; read C3-3-3. Move HLN to C4-5; read D4-0-5.

ANS: $x=.0333 ; y=40.5$

Chapter VII

FOLDED SCALES

VII-A SCALES

The $C F$, a folded C scale is on the slide; the $D F$, a folded D scale, is on the body. Both scales have a single index in the center. Their extreme right and left ends are labeled π.

VII-B PRINCIPLE

Operations performed on the C and D scales are simultaneously being performed on the $C F$ and $D F$ scales.

VII-C APPLICATIONS

When numbers can not be conveniently matched because of their position on the C and D scales: the operation can be transferred to the folded scales. The calculation can either be completed on the folded scales or returned to the C and D scales at will.
NOTE: When the answer is to be found under an index, it can be read under either the $C F$ or C indices; but when the answer is to be found under the hairline, it must be read on the scale concerned.

Ex: $(18 \div 4) \times 11$
AA: $(20 \div 4) \times 10=50$
SRO:

1. Divide: Over $D 1-8$ set $C 4$; quotient is then under $R C 1$ at $D 4-5$.
2. Multiply: Move hairline to C1-1; since 1-1 is off scale, it would be necessary to switch $L C 1$ over 4-5 to bring 1-1 back on scale. Instead, note that DF4-5 is over CF1. Then, merely move HLN to CF1-1 and read under HLN, DF4-9-5.

ANS: 49.5

Multiplication by π :
SRO: Set N on D under $H L N$, read $\pi \times N$ on $D F$.

$$
\text { Ex: Opposite } 3 \text { on } D \text { read } 3 \pi=9.42 \text { on } D F \text {. }
$$

Division by π :
SRO: Set N on $D F$ under $H L N$, read $N \div \pi$ on D.

$$
\text { Ex: Opposite } 4 \text { on } D F \text { read } 4 \div \pi=1.273 \text { on } D \text {. }
$$

NOTE: Circumference $($ on $D F)=\pi \times$ diameter $($ on $D)$; diameter $($ on $D)=\operatorname{circumference~}($ on $D F) / \pi$

Chapter VIII

RECIPROCAL (or INVERSE) SCALES

VIII-A SCALES

The CI, on the slide, is an inverted C scale, and reads from right to left. The CIF (above the CI) is a folded CI scale having a single index in the center of the scale.

VIII-B RECIPROCALS

Definition:

The reciprocal of the number N equals $1 / \mathrm{N}$; also written as N^{-1}.

$$
\text { Ex: } 5^{-1}=1 / 5=.200
$$

Properties:

Division by N can be replaced by multiplication by $1 / \mathrm{N}, a \div N=a \times 1 / N$.

$$
\text { Ex: } 6 \div 3=6 \times 1 / 3=2
$$

Multiplication by N can be replaced by division by $1 / N . a \times N=a \div 1 / N$.

$$
\text { Ex: } 4 \times 2=4 \div 1 / 2=8
$$

VIII-C USING THE RECIPROCAL SCALES

To obtain a reciprocal:
SRO: Set N on scale C under the hairline, read $1 / \mathrm{N}$ on the scale $C I$. If N is on the $C F, 1 / N$ is read from the CIF scale.

Ex: Find 1/246
AA: $1 / 246 \rightarrow 1 / 200=\left(1 / 2 \times 10^{-2}\right)=\left(.5 \times 10^{-2}\right)=.005$
SRO: Set C2-4-6 under HLN and read CI4-0-6
ANS: 0.00406

To reduce slide motions in multiply and divide when factors are widely separated:
Remember: When using the $C I$ answers are read on D; with the $C I F$, answers are read on the $D F$.

Ex: $12 \div 7.5$ - Perform as 12×7.5^{-1}
SRO: Set LC1 over D1-2. Move HLN to CI7-5. Read under HLN, D1-6.
ANS: 1.6

Ex: 12×9.1 - Perform as $12 \div 9.1^{-1}$
SRO: Set HLN over D1-2. Bring CI9-1 under HLN. Read under RC1, D1-0-9-2.
ANS: 109.2
NOTE: 12×9.1 could also have been calculated with the $C F$ and $D F$.

To simplify combined operations by permitting complete alternation of multiply and divide operations:
NOTE: The proficient use of the CI and CIF scales is of fundamental importance in fast computation.

Ex: $2.1 \times 14 \times 6.6 \div 0.073$
AA: $(2 \times 10 \times 7) \div\left(7 \times 10^{-2}\right)=140 \div\left(7 \times 10^{-2}\right)=\left(20 \times 10^{2}\right)=2000$
SRO: Perform as $2.1 \times 1.4 \div 6.6^{-1} \times 7.3^{-1}$

1. Multiply: Set LC1 over D2-1, move HLN to C1-4.
2. Divide: Bring CI6-6 under HLN.
3. Multiply: Set HLN on CI7-3. Read under HLN, D2-6-6.

ANS: 2660

Chapter IX

COMBINED OPERATIONS - FOLDED AND INVERSE SCALES

NOTE: With the combined use of folded and inverse scales, a minimum number of slide and HLN shifts is required.

Ex: $2 \times 1.4 \times 6.2 \times 7 \times 0.51$
AA: $2 \times 1 \times 6 \times 7 \times\left(5 \times 10^{-1}\right)=42$
SRO: Perform as $2 \times 1.4 \div 6.2^{-1} \times 7 \div 0.51^{-1}$

1. Multiply: Set LC1 on D2, HLN on C1-4.
2. Divide: Bring CI6-2 under HLN.
3. Multiply. Since C7 is off scale, set HLN on CF7.
4. Divide: Bring CIF5-1 under HLN. Read under CF index, DF6-2.

ANS: 62

Ex: $6.04 \times .051 \times 86 \div 2.64$
AA: $6 \times\left(5 \times 10^{-2}\right) \times 8 \times 10 \div 2=12$
SRO: Perform as $6.04 \times .051 \div 86^{-1} \times 2.64^{-1}$

1. Multiply. Set LC1 at D6-0-4, HLN on C5-1.
2. Divide: Bring CI8-6 under HLN.
3. Multiply: Set HLN on CIF2-6-4. Read under HLN, DF1-0-0-2.

ANS: 10.02

Chapter X

SQUARES

X-A SCALES USED

D and C with the A and B (or $\sqrt{ }$) scales. The A on the body and B on the slide each contain two scales, similar to, but $1 / 2$ the length of the D. (Two full-length scales may replace the A and B.)

X-B SRO

$N \rightarrow N^{2}$. Set hairline over N on D scale and read N^{2} under hairline on A scale (or set hairline over N on C scale and read N^{2} under hairline on B scale).

Ex: 3^{2}
SRO: Set him over D3, read under HLN, A9.
ANS: 9

Ex: $(41)^{2}$
AA: $\left(4 \times 10^{1}\right)^{2}=\left(16 \times 10^{2}\right)=1600$
SRO: HLN on D4-1, read under HLN, A1-6-8.
ANS: 1680

Ex: $(.115)^{2}$
AA: $\left(1 \times 10^{-1}\right)^{2}=\left(1 \times 10^{-2}\right)=.01$
SRO: HLN on D1-1-5: read under HLN, A1-3-2.
ANS: 0.0132

Ex: $(613)^{2}$
AA: $\left(6 \times 10^{2}\right)^{2}=\left(36 \times 10^{4}\right)=360,000$
SRO: HLN on D6-1-3; read under HLN, A3-7-6.
ANS: 376,000

X-C SRO

Set hairline on N on $\sqrt{ }$ scale. Read N^{2} on D.

Ex: $(6.1)^{2}$
SRO: Set HLN on 6-1 on $\sqrt{ }$ scale; read D3-7-2.
ANS: 37.2

Chapter XI

CUBES

XI-A SCALES USED

The D with K (or $\sqrt[3]{ }$ scales. The K on the body is composed of three scales. similar to, but each $1 / 3$ the length of the D. (Three full-length scales may replace the K.)

XI-B SRO

$N \rightarrow N^{3}$. Set hairline over N on D scale; read N^{3} under hairline on K scale.

Ex: 2^{3}
SRO: Set $H L N$ over $D 2$; read under $H L N, K 8$.
ANS: 8

Ex: $(0.117)^{3}$
AA: $(0.117)^{3} \cong\left(1 \times 10^{-1}\right)^{3}=.001$
SRO: HLN on D1-1-7, read under HLN, K1-6-1
ANS: . 00161

Chapter XII

SQUARE ROOTS

XII-A SCALES USED

Same as for squares.

XII-B FORM OF N

Must have either one or two digits left of the d.p. Otherwise, re-write N with an even power of ten

$$
\cdots, 10^{-4}, 10^{-2}, 10^{0}, 10^{2}, 10^{4}, \cdots
$$

such that one or two digits are placed left of the d.p. in the multiplier. Then, take the square root of this power of ten.

$$
\text { Ex: } \left.\sqrt{400}=\sqrt{\left(4 \times 10^{2}\right)}=\sqrt{4} \times 10^{1}\right)
$$

$$
\text { Ex: } \left.\sqrt{0.00225}=\sqrt{\left(22.5 \times 10^{-4}\right)}=\left(\sqrt{22.5} \times 10^{-2}\right)\right)
$$

The square root of the multiplier is found on the slide rule as follows:

XII-C SRO

$N \rightarrow \sqrt{N}$ - Set the hairline over N located on the proper section of the A or B scales as shown:

No. of digits left of the d.p. in the multiplier	1	2
	left	right
Root location on section of A or B scale	$(1 \mathrm{st})$	$(2 \mathrm{nd})$

Read \sqrt{N} under the hairline on the D scale if N is set on A (or on the C scale is N is set on B).

XII-D SRO

Set hairline on N on D.
Read \sqrt{N} on upper or lower $\sqrt{ }$ scale if N has one or two digits left of the d.p.

XII-E DECIMAL POINT LOCATION

Always place the d.p. after the first digit of the number read from the slide rule. When the square root is multiplied by a power of ten, move the d.p. the indicated number of places.

Ex: $\sqrt{900}$
Form: $\sqrt{900}=\sqrt{\left(9 \times 10^{2}\right)}=\left(\sqrt{9} \times 10^{1}\right)$
SRO: HLN on $A 9$ (left section). Read under HLN D3-0-0.
D.P.: $\left(3.0 \times 10^{1}\right)$

ANS: 30

Ex: $\sqrt{25}$
Form: $\sqrt{25}$ is already in the proper form.
SRO: Set HLN on A2-5 (right section). Read under HLN, D5-0-0.
D.P.: 5.0

ANS: 5.0

Ex: $\sqrt{415}=\sqrt{\left(4.15 \times 10^{2}\right)}=\left(\sqrt{4.15} \times 10^{1}\right)$
SRO: Set HLN on A4-1-5 (left section). Read under HLN, D2-0-4.
D.P.: $\left(2.04 \times 10^{1}\right)$

ANS: 20.4

Ex: $\sqrt{0.00365}=\sqrt{\left(36.5 \times 10^{-4}\right)}=\left(\sqrt{36.5} \times 10^{-2}\right)$
SRO: Set $H L N$ on $A 3-6-5$ (right section). Read under $H L N, D 6-0-4$.
D.P.: $\left(6.04 \times 10^{-2}\right)$

ANS: 0.0604

Ex: $\sqrt{52.4}$
SRO: Set HLN on D5-2-4; read 72-4 on lower $\sqrt{ }$ scale.
ANS: 7.24

Chapter XIII

CUBE ROOTS

XIII-A SCALES USED

Same as for cubes.

XIII-B FORM OF N

Must have either one, two, or three digits to the left of the d.p. Otherwise, rewrite N with a power of ten that is a multiple of three

$$
\cdots, 10^{-6}, 10^{-3}, 10^{0}, 10^{3}, 10^{6}, \cdots
$$

such that one, two, or three digits are placed to the left of the d.p. in the multiplier. Then, take the cube root of this power of ten.

$$
\text { Ex: } \sqrt[3]{27000}=\sqrt[3]{\left(27 \times 10^{3}\right)}=\left(\sqrt[3]{27} \times 10^{1}\right)
$$

$$
\text { Ex: } \sqrt[3]{.0000157}=\sqrt[3]{\left(15.7 \times 10^{-6}\right)}=\left(\sqrt[3]{15.7} \times 10^{-2}\right)
$$

The cube root of the multiplier is found on the slide rule as follows:

XIII-C SRO

$N \rightarrow N^{3}$ — Set the hairline over N on the proper section of the K scale as shown:

No. of digits left of the d.p. in the multiplier	1	2	3
	left	middle	right
Root location on section of L scale	$(1 \mathrm{st})$	(2nd)	(3rd)

Read $\sqrt[3]{N}$ under the hairline on the D scale.

XIII-D SRO

Set N on D.
Read $\sqrt[3]{N}$ on upper, middle or lower $\sqrt[3]{ }$ scale if N has one, two, or three digits left of the d.p.

XIII-E THE LOCATION OF THE DECIMAL POINT

Always place the d.p. after the first digit of the number read from the slide rule.
When the cube root is multiplied by a power of ten, move the d.p. the indicated number of places.

Ex: $\sqrt[3]{4150}$
Form: $\sqrt[3]{4150}=\sqrt[3]{\left(4.15 \times 10^{3}\right)}=\left(\sqrt[3]{4.15} \times 10^{1}\right)$
SRO: Set hairline on K4-1-5 (left section). Read under hlm, D1-6-0-5.
D.P.: $\left(1.605 \times 10^{1}\right)$

ANS: 16.05

Ex: $\sqrt[3]{0.000068}$
Form: $\sqrt[3]{0.000068}=\sqrt[3]{\left(68.0 \times 10^{-6}\right)}=\left(\sqrt[3]{68.0} \times 10^{-2}\right)$.
SRO: Set HLN on K6-8-0 (middle section). Read under HLN, D4-0-8.
D.P.: $\left(4.08 \times 10^{-2}\right)=0.0408$

Ex: $\sqrt[3]{47.3}$
SRO: Set HLN on D4-7-3; read 3-6-1-5 on middle $\sqrt[3]{ }$ scale.
ANS: 3.615

Chapter XIV

COMBINED OPERATIONS: SQUARES OR SQUARE ROOTS

These problems can be solved without first finding the required roots or powers using the following methods.

XIV-A SQUARE ROOTS

Write all roots in the proper form (see Section XII on page 24). Perform the multiply and divide operations in the usual manner on the scales previously described but when the square root of a number N is needed: on the C (moving) scale, set the hairline over N on the proper section of the B (moving) scale; on the D (fixed) scale, set the hairline over N on the proper section of the A (fixed) scale.

Ex: $2 \times \sqrt{9}$
SRO: Set LC1 at D2. Since the root is required on the C scale set $H L N$ on $B 9$ (left section). Read under HLN, D6.

ANS: 6

Ex: $\sqrt{16} \div 2$
SRO: Since root is required on the D scale set $H L N$ on $A 1-6$ (right section). Bring $C 2$ under HLN. Read under LC1, D2.

ANS: 2

Ex: $2.06 \times \sqrt{.062} \div \sqrt{916}$
Form: $2.06 \times \sqrt{\left(6.2 \times 10^{-2}\right)} \div \sqrt{\left(9.16 \times 10^{2}\right)}$
AA: $2 \times\left(2 \times 10^{-1}\right) \div\left(3 \times 10^{1}\right) \cong .01$
SRO: Set LC1 at D2-0-6. Set HLN over B6-2 (left section). Bring B9-1-6 (left section) under HLN. Read under LC1, D1-6-9-5.

ANS: 0.01695

XIV-B SQUARES

Multiply and divide may be performed on the A and B scales exactly as on the C and D scales. When the square of a number N is needed: on the B (moving) scale, set the hairline over N on the C (moving) scale; on the A (fixed) scale, set the hairline over N on the D (fixed) scale.

Ex: 2×3^{2}
SRO: Set LB1 at A2. Set HLN on C3. Read under HLN, A1-8.
ANS: 18

Ex: $6^{2} \div 4$
SRO: Set HLN on D6. Bring B4 under HLN. Read under B1, $A 9$.
ANS: 9

Ex: $(4.1)^{2} \div(6.8)^{2} \times 2$
AA: $20 \div 50 \times 2=0.800$
SRO: Set $H L N$ on $D 4-1$. Bring C6-8 under $H L N$. Set $H L N$ on $B 2$ and read under HLN A7-2-7.

ANS: 0.727

XIV-C MIXED SQUARE ROOTS AND SQUARES

For the roots, use the rules in Section XIV-A, but compute the squares as a repeated product (see Section III-E on page 10).

Ex: $6 \times \sqrt{9} \times 2^{2}$, performed as $6 \times \sqrt{9} \times 2 \times 2$

Chapter XV

LOGARITHMS

XV-A SCALES USED

The L and D both on the body. The L scale has eleven primary marks labeled, $0,0.1,0.2,0.3$, etc. to 1 forming 10 equal primary spaces. The value of secondary and tertiary divisions is similar to the other scales.

XV-B COMPUTING LOGS

To determine the characteristic. C : Write N in powers of ten placing one digit to the left of the d.p. of the multiplier. $\mathrm{C}=$ the value of the exponent.

To determine the mantissa, \mathbf{M} : Set the hairline over N on D scale, read M under the hairline on L scale.

Ex: $\log 36$
C: $36=\left(3.6 \times 10^{1}\right) ; C=+1$
M: Set hairline on $D 3-6$: read $M=0.556$ on L.
ANS: $\log 36=1+.556=1.556$

Ex: $\log 0.0622$
C: $.0622=\left(6.22 \times 10^{-2}\right) ; C=-2$
M: Set hairline on D6-2-2; read $M=0.794$ on L.
ANS: $\log 0.0622=-2+0.794$ written as $8.794-10$ or $\overline{2} .794$

XV-C ANTI-LOGS

Given the logarithm of N , find N .

SRO: Set the mantissa on L, read N on D.
D.P. location: Place the d.p. to the right of the first digit read from the slide rule. Convert the characteristic to a power of ten then move the d.p. the indicated number of places.

Ex: Given $\log N=9.583-10$, find \mathbf{N}.
SRO: Set . 583 on L, read under HLN D3-8-3.
D.P.: Write 3.83. Since $C=9-10=-1 ; N=\left(3.83 \times 10^{-1}\right)=0.383$

Chapter XVI

TRIGONOMETRIC FUNCTIONS

XVI-A SCALES

The S scale for sines and cosines; the T scale for tangents (or cotangents) and the $S T$ scale for the sine or tangent of small angles.

XVI-B READING THE SCALES

Angles (θ) measured in degrees, are indicated by the numbered marks. On many slide rules, the S and T scales have two angles associated with the numbered marks: θ (values of θ increase from left to right) and $\left(90^{\circ}-\theta\right)$; values of $\left(90^{\circ}-\theta\right)$ increase from right to left and are sometimes printed in red.

$$
\text { Ex: On the } S \text { scale, mark: } \underline{70 \mid 20} \text { represents both } \theta=20^{\circ} \text { and }\left(90^{\circ}-\theta\right)=70^{\circ} .
$$

Angles not numbered on the scale are positioned by counting the number of primary marks in the space between labeled angles.

Ex: 24° is located on the fourth primary mark between labeled angles 20° and 25°.

Fractions of angles are located between primary marks and may be expressed either in tenths of degrees or minutes ($60 \mathrm{~min} .=1 \mathrm{deg}$.) depending upon the make of the slide rule.

	DEGREES			MINUTES		
Number of marks	1	4	9	1	2	5
Number of spaces	2	5	10	2	3	6
Value of space	0.5	0.2	0.1	30^{\prime}	20^{\prime}	10^{\prime}

XVI-C SLIDE RULE OPERATIONS

$\mathbf{S I N} \theta$

θ	0.57° to 5.7°	$S T$
$\sin \theta$	0.01 to 0.1	C

SRO: Set $H L N$ on θ on scale $S T$, read the value of $\sin \theta$ under $H L N$ on scale C.
D.P.: Place 1 zero between the d.p. and the first digit.

Ex: $\sin 1.62^{\circ}$

SRO: Set HLN on 1.62° on $S T$, read D2-8-2.
ANS: 0.0282

Ex: $\sin 3^{\circ} 14^{\prime}$
SRO: Set $H L N$ on $3^{\circ} 14^{\prime}$ on ST; read C5-6-4.
ANS: 0.0564

θ	5.7° to 90°	S
$\sin \theta$	0.1 to 1.0	C

NOTE: Use the numbers on the S scale which represent θ (usually to the right of the numbered marks). The scale reads from 5.7° on the left, to 90° on the right. The single mark between 80° and 90° represents 85°.

SRO: Set $H L N$ on θ on S, read value of $\sin \theta$ under $H L N$ on C.
D.P.: Place to the left of the first digit.

Ex: $\sin 20^{\circ}$

SRO: Set 20 on S at 70|20, read C3-4-2.
ANS: 0.342

Ex: $\sin 22.3^{\circ}\left(22^{\circ} 20^{\prime}\right)$
SRO: Set $H L N$ on $22.3^{\circ}\left(22^{\circ} 20^{\prime}\right)$ on S, read C3-8-0.
ANS: 0.380
NOTE: $\sin 81^{\circ}$ is 0.988 : $\sin 85^{\circ}$ is 0.996 ; $\sin 89^{\circ}$ is 0.999 .

$\operatorname{COS} \theta$

θ	84.3° to 0°	S
$\cos \theta$	0.1 to 1.0	C

NOTE: Since $\sin \theta=\cos (90-\theta)$, the graduations on the S scale to the left of the numbered marks, representing $\left(90^{\circ}-\theta\right)$, are used for the cosines of the angles. The cosine scale reads from 0° on the right to 84.3° on the left. The single mark between 0° and 10° represents 5° for the cosine (and also $\left(90^{\circ}-5^{\circ}\right)=85^{\circ}$ for the sine).

SRO: Set $H L N$ on θ on S, read value of the \cos under $H L N$ on C.
D.P.: Place to the left of first digit.

Ex: $\cos 65^{\circ}$
SRO: Set $H L N$ on 65° on S at $65 \mid 25$; read $C 4-2-2$.
ANS: 0.422

Ex: $\cos 66.4^{\circ}$
SRO: Set $H L N$ on 66.4° on S, read C4-0-1.
ANS: 0.401

Ex: $\cos 4^{\circ}$
SRO: Set $H L N$ on 4° on S by dividing the space between 0° and 5° by eye, read C9-9-7.
ANS: 0.997

θ	89.4° to 84.3°	$S T$
$\cos \theta$.01 to 0.1	C

SRO: Using the relationship $\sin \theta=\cos \left(90^{\circ}-\theta\right)$, set $\left(90^{\circ}-\theta\right)$ on scale $S T$; read \cos value on C.
D.P.: Place one zero between the d.p. and the first digit.

Ex: $\cos 86^{\circ}$
SRO: Set $\left(90^{\circ}-86^{\circ}\right)$ or 4° on ST, read C6-9-7.
ANS: 0.0697

TAN θ

θ	0.57° to 5.7°	$S T$
$\tan \theta$.01 to 0.1	C

SRO: Set θ on $S T$, read value of $\tan \theta$ from the C scale.
D.P.: Place one zero between the d.p. and the first digit.

Ex: $\tan 3.5^{\circ}$

SRO: Set 3.5° on $S T$, read C6-1-1.
ANS: 0.0611

θ	5.7° to 45°	T
$\tan \theta$	0.1 to 1.0	C

NOTE: Use the graduation on the T scale to the right of the numbered marks, which represent θ. The scale reads from 5.7° on the left, to 45° on the right.

SRO: Set θ on T, read the value of $\tan \theta$ on scale C.
D.P.: Place to the left of the first digit.

Ex: $\tan 11^{\circ}$

SRO: Set 11° on T at $79 \mid 11$, read C1-9-4.
ANS: 0.194

Ex: $\tan 11.7^{\circ}\left(11^{\circ} 40^{\prime}\right)$
SRO: Set $11.7^{\circ}\left(11^{\circ} 40^{\prime}\right)$ on T, read C2-0-7.
ANS: 0.207

θ	45° to 84.3°	T
$\tan \theta$	1.0 to 10	$C I$

NOTE: Use the graduations on the T scale to the left of the numbered marks, which represent $\left(90^{\circ}-\theta\right)$. This scale reads from 45° on the right, to 84.3° on the left.

SRO: Using the relationship $\tan \theta=1 \div \tan \left(90^{\circ}-\theta\right)$, set θ on T and read the value of $\tan \theta$ from the $C I$ scale. If there is no $C I$ scale, use $\tan \theta=1 \div \tan \left(90^{\circ}-\theta\right)$.
D.P.: Place after the first digit.

Ex: $\tan 55^{\circ}$
SRO: Set 55° on T at $55 \mid 35$, read CI1-4-3.
ANS: 1.43

Ex: $\tan 52.5^{\circ}$
SRO: Set 52.5° on T, read CI1-3-0-3.
ANS: 1.303

θ	84.3° to 89.4°	$S T$
$\tan \theta$	10 to 100	$C I$

SRO: Using relationship $\tan \theta=1 \div \tan \left(90^{\circ}-\theta\right)$, set $\left(90^{\circ}-\theta\right)$ on $S T$ scale and read the value of $\tan \theta$ from the CI scale.
D.P.: Place after the second digit.

Ex: $\tan 86^{\circ}$

SRO: Set $\left(90^{\circ}-86^{\circ}\right)$ or 4° on ST; read CI1-4-3.
ANS: 14.3

XVI-D COMBINED TRIGONOMETRIC OPERATIONS

Multiplication and division involving trigonometric functions may be performed without recording the value of these functions by using the $S . T$, and $S T$ scales exactly as the C scale. This is possible since the angles on the S, T, and $S T$ scales are in line with the corresponding trigonometric functions of these angles on the C scale and the right and left indices on the trigonometric scales are in line with the indices on the C scale.

Ex: $2.3 \times \sin 8^{\circ}$
AA: $\sin 8^{\circ} \cong 0.1,2 \times \sin 8^{\circ} \cong 0.2$
SRO: Set LC1 on D2-3. Set HLN on S8 ${ }^{\circ}$. Read D3-2 under HLN.
ANS: 0.32

Ex: $0.315 \div \tan 39^{\circ}$
AA: $\tan 39^{\circ} \cong 1 ; 0.3 \div \tan 39^{\circ} \cong 0.3$
SRO: Set HLN on D3-1-5. Bring T39 ${ }^{\circ}$ under HLN. Read D3-8-9 under RT1.
ANS: 0.389

Ex: $6.38 \times\left(\cos 58^{\circ}\right)^{2} \div 0.132$
AA: $\cos 58^{\circ} \cong 0.5 ; 6 \times(0.5)^{2} \div .1 \cong 15$
SRO: Use A and B scales. (See Section XIV-B on page 30) Set $R B 1$ at $A 6-3-8$. Set HLN on $S 58^{\circ}$ (cosine marking). Bring B1-3-2 under HLN. Read A1-3-6 on B index.

ANS: 13.6

Chapter XVII

LOG LOG SCALES

XVII-A DESCRIPTIONS

The scales labeled $L L 1, L L 2, L L 3$ cover numbers >1. Numbers <1 are on the reciprocal scales which may be labeled $L L 01, L L 02$, etc; or $L L 1-, L L 2-$, etc.; $L L / 1, L L / 2$, etc.; or $L L 0$ and $L L 00$. All scales are read with the d.p. in the printed position.

XVII-B APPLICATIONS

To find natural logarithms $\left(\log _{e} N\right.$ or $\left.\ln N\right)$:

SRO: Set hairline on N on appropriate $L L$ scale. Read $\log _{e}$ under hairline on D (or $D F / M$ scale).
D.P.: Located by the exponent range (or first digit position) of the $L L$ scale used: N on $L L 1, \log _{e} N$ on D has two decimal places $(.01 \rightarrow 0.1$ or 0.0 D$)$; on $L L 2$, one decimal place; on $L L 3$, one digit left of the d.p. in $\log _{e} N$.

Ex: $\log _{e} 12.2$
SRO: Set $H L N$ on 12.2 on $L L 3$. Read under $H L N D$ (or $D F / M$) 2-5-0.
ANS: 2.50

Ex: $\log _{e} 0.98$
SRO: Set HLN on 0.98 on LL01 (or LL1-). Read under HLN D (or DF/M) 2-0-2.
ANS: Since exponent range on LL01 is -0.01 to -0.1 (or on LL1-, first digit position is -0.0D) answer is -0.0202

NOTE: On slide rules having only the $L L 0$ and $L L 00, \operatorname{read} \log _{e} N$ on the A instead of the D scale.
D.P.: N on $L L 0$, use $\mathrm{AA}=\mathrm{N}-1$; N on $L L 00$, left half of A scale is $-0 . \mathrm{D}$: right half is -D .0

Ex: $\log _{e} 0.97$
SRO: Set HLN on 0.97 on LLO. Read under HLN A3-0-5.
AA: $0.97-1=-0.03$
ANS: -0.0305

Ex: $\log _{e} 0.50$
SRO: Set HLN on 0.50 on LLOO. Read under HLN 6-9-5 on left half of A.
ANS: -0.695

To find non-integer powers and roots:

SRO: $N^{x}=P$ or $\sqrt[x]{N}=Q$. Calculate AA. Set hairline on N on appropriate $L L$ scale, then set a C index under the hairline. Move hairline to x on C scale for powers, to x on $C I$ scale for roots. Read under hairline on appropriate $L L$ scale as indicated by the AA.

Ex: 4^{2}
SRO: Set HLN on 4 on LL3. Set LC1 under HLN. Set HLN on C2. Read 16 on LL3.

Ex: $6.2^{-2.1}$
AA: $6^{-2}=1 \div 36=0.03$
SRO: Set HLN on 6.2 on LL3. Set LC1 under HLN. Move HLN to C2-1; read 0.0217 under HLN on LL03, (or LL/3, or LL3-).

Ex: $\sqrt[4.1]{30}$
AA: $\sqrt[4]{30}=2.3$.
SRO: Set HLN on 3 on LL3. Set LC1 under HLN. Move HLN to CI4-1.
ANS: Read 2.29 under HLN on LL2.
NOTE: On rules having only two reciprocal scales (LLO, LLO0), use instead of scale C, scale B (or A) with the correct half to employ determined by the AA. Furthermore, negative powers of N can only be solved by first evaluating the positive reciprocal.

Ex: $6.2^{-2.1}=1 /(6.2)^{2.1}=(0.162)^{2.1}$
AA: $(0.16)^{2}=0.026$
SRO: Set HLN on 0.162 on LLO. Set central B1 under HLN. Set HLN on 2-1 on right half of B scale.

ANS: Read 0.0217 under $H L N$ on LLO0.

Appendix A

GLOSSARY

Notations in this document include:

Ex: An example.
Form: How to re-arrange the question in order to facilitate slide rule operations.
AA: An approximate answer. This is the rough estimate used to determine the final order of magnitude of a calculation.

SRO: Slide rule operations. What steps are done to arrive at the answer.
D.P.: Where to set the decimal point.
\mathbf{M}, \mathbf{C} : The mantissa and characteristic of a power-of-ten notation number. $\left(M \times 10^{C}\right)$
ANS: The final answer.
Scales Slide rule scales are italicized, such as scale " C ".
Markings Slide rule readings are indicated such as "C4-3" for primary mark 4 and secondary mark 3 on scale C.
HLN The slide rule's hairline, also italicized as HLN.

Appendix B

ORIGINAL DOCUMENT

The following pages are a grayscale version of the original document. The original colors were as shown on the title page.

NOTE: The C, A, and K scales shown above are not in their proper length proportion as you can see by referring to your slide rule. All scales have been drawn to
equal length to more clearly illustrate the respective differences in scale division and to simplify the mastery of the number location method explained in Sec. I.

1. READING THE SLIDE RULE SCALES
A. THE DECIMAL POINT (d.p.). There is no way of indicating the $\begin{aligned} & \text { odd digits (} 1,3,5,7,9 \text {) are located midway between mark } \\ & \text { D-2. A NUMBER WITH TWO SIGNIFICANT DIGITS IS LOCATED AT THE SECON }\end{aligned}$ position of the d.p. in a number read on a slide rule scale. Only
ARY MARK OR IN THE SECONDARY SPACE REPRESENTING THE SECOND
FOLIOWING THE PRIMARY MARK THAT REPRESENTS THE FIRSI DIGIT
Fince of significant digits is indicated. he sequence of significant digits is indicated SIGNIFICANT DIGIIS (s. d.'s.) in a number are the first non-zerodigit Ex: 1. No, 1-8-0 is located on each scale at the eighth secondary Ex: s.d.'s in italics: $600,450,40500,0.0600,0.6020,0.00160060$. mark following primary mark 1.
Thus the numbers $10,500,1,050$, and .00105 are treated as the Ex: 2. No. 2-3-0 is located on each scale at the third secondary same number consisting only of the three s.d.'s $1-0-5$. Likewise $002,02,2,200,2,000$, etc. are treated as a number with the single s.d. 2. NOTE: Numbers may be expressed to three places using zeros when necessary since shide rule scales can usually be read 6-9-0; etc. For the location of the d.p. in the answer see Section II C-I. PRIMARY MARKS AND THE FIRST SIGNIFICANT DIGIT
The ten primary marks on each of the scales in Fig. 1 are labeled with the largest numbers $(1,2,3,4,5,6,7,8,9,1)$ and divide the length of a scale into nine primary spaces. The scale may run the length of the rule (C scale) or may be rep
times (A and K scales) as seen on your slide rule.
C-2. A NUMBER WITH ONE SIGNIFICANT DIGIT IS LOCATED AT THE CORRESPONDING PRIMARY MARK. Ex: No.'s 1-0-0, 2-0-0, 3-0-0, etc. are ocated at primary marks $1,2,3$, etc.
D-I. SECONDARY MARKS AND THE SECOND SIGNIFICANT DIGIT. Secondary marks (the heavy lines in Fig. 1) form the major divisions of th space between two consecutive primary males. Note in Fig 1 and on your slide rule that nine second marks form ten secondary spaces. Each space is then equal to one unit in the second place of a number and s.d.'s 1 to 9 can be lo cated on secondary marks. Four marks form only five secondary spaces, each space representing two units in the second place This means that even digits $(2,4,6,8)$ are located on marks a I. LOCATION OF THE DECIMAL POINT IN THE ANSWER STEP 1 POUb 1340 becomes $1000 ; .0609 \rightarrow .06 ; 53.65 \rightarrow 50 ; .003006 \rightarrow .003$. NOT Increase the first s.d. by one unit if the second is five or mor Ex: $4.62 \rightarrow 5 ; .987 \rightarrow 1.0$
STEP 2. CONVERT TO POWERS OF TEN
A. POWERS $\left\{\begin{aligned} & 10^{0}=1 ; 10^{1}=10 ; 10^{2}=100 ; 10^{3}=1000 ; \text { et } \\ & 10^{-1}=0 ; 1 ; 10^{-2}=0.01 ; 10^{-3} \\ & \text { OF }\end{aligned}\right.$ NOTE: Negative powers of ten are the reciprocals of the cot Not: Negative powers of ten are the reciprocals of the c
ponding powers of ten. Ex: $10^{-2}=1 / 10^{2}=1 / 100=.01$ B. CONVERSION FORM. Numbers are written with one (or two) to the left of the d.p. Ex: $300=3 \times 10 \times 10=3 \times 10^{2}$ The integer is called the multiplier. The exponent of ten is the powe
Numbers >10. Shift the d.p. " m " places left, multiply by Numbers >10. Shift the d.p. "m" places left, multiply by
10^{m}. Ex: $500=5 \times 10^{2} ; 6000=6 \times 10^{3}$ Numbers $<~$ Shift the d.p. "m" places right and multiply by 10^{-m}. Ex
$0.06=6 \times 10^{-2}, 0.0030=3 \times 10^{-3}$ STEP 3. PERFORM INDICATED OPERATIONS
STEP 3. PERFORM INDICATED OPERATIONS
A. MUITIPIICATION. $\left(\mathrm{N}_{1} \times 10^{x}\right)\left(\mathrm{N}_{2} \times 10^{y}\right)=\left(\mathrm{N}_{1} \times \mathrm{N}_{2}\right)\left(10^{x+y}\right)$
Exponents Exponents are added algebraically, Ex: $\left.\left(6 \times 10^{2}\right)(3)^{-1} \times 10^{2}\right)$
$18 \times 10^{3} \quad$ Ex: $\left(4 \times 10^{3}\right)\left(3 \times 10^{-2}\right)=12 \times 10^{1} \quad \mathrm{Ex}:(7 \times 10)$ $\left(2 \times 10^{-4}\right)=14 \times 10^{-2}=\left(N_{2} \times 10^{y}\right)=\left(\mathrm{N}_{1} \div \mathrm{N}_{2}\right)\left(10^{x-y}\right)$. E
B. DIVISION. $\left(\mathrm{N}_{1} \times 10^{x}\right) \div\left(\mathrm{N}^{x}\right)$ ponents are subtracted algebraically. Ex: $\left(6 \times 10^{2}\right) \div\left(3 \times 10^{2}\right.$
 algebraically. Ex: $\left(2 \times 10^{3}\right)^{2}=2^{2} \times 10^{3} \times 2=4 \times 10^{6} \mathrm{Ex}$ $\left(2 \times 10^{-3}\right)^{3}=8 \times 10^{-9}$
D. ROOTS. $\sqrt{y} \sqrt{\mathrm{~N} \times 10^{x}}=\sqrt{\mathrm{N}} \times 10^{x / y}$. Exponents are divide algebraically. Ex: $\sqrt{400}=\sqrt{4 \times 10^{2}}=\sqrt{4} \times 10^{2 / 2}=2 \times 10^{2}$
Ex: $\sqrt{.0004}=\sqrt{4 \times 10^{-4}}=2 \times 10^{-2} \quad$ Ex: $\sqrt[3]{27,000}=$ $\sqrt[3]{27 \times 10^{3}}=3 \times 10^{1}$
STEP 4. CONVERT ANSWERS BACK TO DECIMAL NOTATION
A. $\mathrm{N} \times 10^{\text {m }}$: Shift the d.p. " m " places right. Ex: $6 \times 10^{3}=600$ Ex: $5.4 \times 10^{1}=54$
B. $\mathrm{N} \times 10^{-m}$: Shift decimal point " m " places left. Ex: 7.14 $10^{-2}=0.0714$ Ex: $.0600 \times 10^{-1}=.006$
C. COMBINED OPERATINS
C. COMBINED OPERATIONS
$\frac{3.02 \times 120 \times \sqrt{392}}{1.15 \times(30.6)^{2}} \mathrm{AA}: \frac{\left(3 \times 10^{0}\right)\left(1 \times 10^{2}\right)\left(\sqrt{4 \times 10^{2}}\right)}{\left(1 \times 10^{0}\right)\left(3 \times 10^{1}\right)^{2}}$ $1.15 \times(30.6)^{2}$
$3 \times 1 \times 2$ AA: $\frac{\left(1 \times 10^{0}\right)\left(3 \times 10^{1}\right)^{2}}{}$ $\frac{3 \times 1 \times 2}{1 \times 9} \times 10\left(0+2+\frac{2}{2}-0-(1 \times 2)\right)=2 / 3 \times 10^{1}=6.67$

III. MULTIPLICATION

A. SCALES USED. The C on the slide and the D on the body exten
the length of the rule. The left and right " 1 " marks are calle the length of the rule. The left and right " 1 " marks are calle
the left and right C and D indices. ($L C 1, R C 1 ; L D 1, R D 1$) the left and right C and D indices. ($L C 1, R C 1 ; L D 1, R D 1$)
B. SLIDE RUIE OPERATION (SRO) $\mathrm{N}_{1} \times \mathrm{N}_{2}=\mathrm{P}$. Set the left index over the first number N_{1} on the D scale. Move the hair
line (hln) to the second number N_{2} on the C scale. Read the

mark after primary mark 2 . x:3. No. 6-2.0 on scale

Exter primary mark 6
x: 4. $7-5-0$ on scale K is located halfway between secon econdary mark ($7-4-0$) and third secondary mark ($7-6-0$).
-1. TERTIARY MARKS AND THE THIRD DIGIT.Tertiary marks (the thin lines
-2. A NUMBER WITH THREE SIGNIFICANT DIGITS IS LOCATED AT THE CO
RESPONDING TERTIARY MARK OR IN THE TERTIARY SPACE FOLLOWING THE ExCOND DIGIT POSITION.
Ex:5. No. 1-3-2. On scale C it is located at the second tertiary
mark following position 1-3-0. On scale A it is located at th mark following position 1-3-0. On scale A it is located at the
first tertiary mark following position $1-3-0$, since each space is valued two units. On scale $K, 1-3-2$ is estimated two-fifths of the way between 1-3-0 and the next tertiary mark 1-3-5.
Ex: 6. No. 8-5-7. On scale C it is located two-fifths of the way etween the center tertiary mark $8-5-5$ and mark 8-6.0. On scale A, 8-5-7 is estimated at a point seven-tenths of the way between 3.5-0 and $8-6.0$ since the entire space is equivalent to 10 units in
the third place. On scale K first locate $8-5-0$ midway between marks $8-4-0$ and $8-6-0$. Then estimate a point seven-tenths of the way between 8-5-0 and 8-6-0 to locate 8-5-7.
al. No. 9-0-3. NoIt: When the second digit is zero the numbe is always located in the space between the appropriate primar
under hairline on the D scale. Ex: 2×3 SRO Set LC1 over D2. Move hln to C3. Read product under th hln at $D 6$. ANS: 6 . NOTE: If in the second step, N_{2} canno be positioned on the C scale, set the right C index over N_{1} in
stead. Ex: 2×9. SRO: If $L C 1$ is set over $D 2$ C9 is stead. Ex: 2×9. SRO: If $L C 1$ is set over $D 2$, C9 is off scale
therefore, set $R C 1$ over $D 2$. Move hln to C9. Read product under hln at $D 1-8$. ANS: 18
und
c. COMPLETE OPERATION Ex: $21 \times 320 \mathrm{AA}$: Round off and expres as powers of ten; $21 \rightarrow 20=2 \times 10^{1} ; 320 \rightarrow 300=3 \times 10^{2}$. Per
 $6 \times 10^{3}=6000$. SRO: Set $L C 1$ on $D 2-1$. Move hln to C3-2 Read the product under the hin at D6-7-2. ANS: Since AA
6000 , the true answer is 6,720 . $\mathrm{Ex}: 0.0855 \times 4120 \mathrm{AA}:\left(9 \times 10^{-2}\right)$ $\left(4 \times 10^{3}\right)=36 \times 10^{1}=360$ SRO: RC1 on D8-5-5, hin to C4-1-2 Product under hin at D3-5-2. ANS: 352 Ex: 0.442×11.6 AA $\left.4 \times 10^{-1}\right)\left(1 \times 10^{1}\right)=4 \times 10^{\circ}=4$ SRO: $L C 1$ on $D 4-4-2$, hln to PERCENTAGES under hin at D5-1-2. ANS: 5.12 D. PERCENTAGES. $\times \%$ of $\mathrm{N}=(\mathrm{x}) \times(\mathrm{N}) \times\left(10^{-2}\right)$. Ex: 50%
$12=50 \times 12 \times 10^{-2}=600 \times 10^{-2}=6 \mathrm{Ex}: 6.4 \%$ $12=50 \times 12 \times 10^{-2}=600 \times 10^{-2}=6$ Ex: 6.4% of .036 AA
$6 \times\left(4 \times 10^{-2}\right) \times 10^{-2}=24 \times 10^{-4}=.0024$ SRO: Set RC1 $\times\left(4 \times 10^{-2}\right) \times 10^{-2}=24 \times 10^{-4}=.024$ SRO: Set $R C 1$
over $D 6.4$. Move hin to C3-6. Read under hin, $D 2-3$. ANS: 0.002 E. CONTINuED PRODUCTS. $N_{1} \times \mathbf{N}_{2} \times \mathbf{N}_{3}=$ P. SRO Multiply
the first two factors $\left(\mathbf{N}_{1} \times \mathbf{N}_{2}=\right.$ M $^{\text {M }}$ Multiply this partial product by the next factor $\left(\mathrm{P}_{\mathrm{a}} \times \mathrm{N}_{3}=\mathrm{P}_{\mathrm{b}}\right)$. Continue multi plying each partial product by the next factor until the final pro (1×10^{1}) $\left(1 \times 10^{1}\right)=5.4$ SRO: It is not necessary to read any of the par
tial products. Set $R C 1$ over $D 6-4$. Move hin to CB 8 . Bring $L C$ hln at D6-9. ANS: 6.9
V. DIVISION. A. SCALES USED are C and D

SRO- $N_{1} \div N_{2}=Q$. Set hairline over the numerator N_{1} on hairline. Read quotient Q under whichever C index falls on
heale the D scale. Ex: $6-3$ SRO: Set hrn on $D 6$. Bring C3 under hin Read quotient under LC1 at D2. ANS: 2 Ex: $62 \div 305 \mathrm{AA}$
$\left(6 \times 10^{1}\right) \div\left(3 \times 10^{2}\right)=2 \times 10^{-1}=0.2$. SRO: Set hin on D6-2 $\left.6 \times 10^{1}\right) \div\left(3 \times 10^{2}\right)=2 \times 10^{-1}=0.2$. SRO: Set hin on $D 6-2$
Bring $C 3-0-5$ under hin. Read quotient under $L C 1$ at $D 2$-0.3. Bring C3-0-5 under hln. Read quotient under $L C 1$ at $D 2-0-3$
ANS: $0.203 \mathrm{Ex}: 17.55 \div 0.00203 \mathrm{AA}:\left(2 \times 10^{1}\right) \div\left(2 \times 10^{-3}\right)=$ $1 \times 10^{4}=10,000$ SRO: hln on D1-7-5-5. Bring C2-0-3 under hin. Under $R C 1$ read D8-6-4. ANS: 8,640
V. COMBINED MULTIPLICATION AND DIVISION
A. ONE FACTOR IN NUM. OR DENOM. Perform sequence mult, then
division. Form: $N_{1} \times N_{2} \times N_{3} \ldots . . \div N_{d}$ or $\left(N_{n} \div N_{1}\right) \times$ $\mathrm{N}_{2} \times \mathrm{N}_{3}$.
s. SEveral factors in num. and denom. Perform mult. and div. operations alternately whenever possible since the least number of slide rule motions will then be required. Form: $\frac{N_{1} \times N_{2}}{N_{3} \times N_{1}}$ perform as $N_{1} \div N_{3} \times N_{2} \div N_{4} ; \frac{N_{1} \times N_{2} \times N_{3}}{N_{5} \times N_{6}}$
C, located three-fifths of the way between primary mark 9 (9-0-0) and the first tertiary mark ($9-0.5$). On scale A, since there are no tertiary marks, it is located three-tenths of the way between primary mark 9 (9-0.0) and the first secondary mark ($9-1-0$) On scate K, first estimate 9-1-0; then estimate $9 \cdot 0-3$
three-tenths of the distance between $9-0.0$ and $9-1-0$.
T. THE FOURTH DIGIT OF A NUMBER can be located only on that por
In
tion of a scale containing ten tertiary spaces.
Ex: 8. No. 1-5-5-8 is located on scale C eight-tenths of the way Ex: 9. No 1-2-0-2 NOTE. W.
Ex: 9. No. 1-2-0-2. NOTE: When the third digit is zero, the num ber is always located in the space between the appropriate sec
ondary mark and the first tertiary mark following it. No. 1-2-0-2 n scale C is two-tenths of the way between 1-2-0-0 and 1-2-1-0. IF a number has more significant digits than can be located ac URATEIY ON A GIVEN SCALE, it is first rounded off. See II. SUMmARY OF VARIATIONS IN SLIDE RULE SCALE DIVISIONS

MARKS	SPACES	SPACE/VALUE	DIGIT LOCATION
$\mathbf{9}$	10	1 unit	all digits located on marks
4	5	2 units	$2,4,6,8$ on marks; $1,3,5,7$, 9 half-way between marks.
$\mathbf{1}$	2	5 units	5 on the mark; 1 to 4 and 6 to 9 estimated in space left or right of the mark.
$\mathbf{0}$	$\mathbf{1}$	10 units	all digits estimated by ap- proximate division of the space into ten parts.

perform as $N_{1} \times N_{2} \div N_{5} \times N_{3} \div N_{6} \times N_{4} ; \frac{N_{1} \times N_{2}}{N_{3} \times N_{4} \times N_{5}}$ perform as $N_{1} \div N_{3} \times N_{2} \div N_{4} \div N_{5}$; etc.
$E_{x}: \frac{2.02 \times 120 \times 0.0925}{115 \times 0.81}$ AA: $\frac{2 \times\left(1 \times 10^{2}\right) \times\left(9 \times 10^{-2}\right)}{1 \times(8 \times 10-1)}$ $8 \div 8 \times 1.15 \times 0.81 \quad 1 \times\left(8 \times 10^{-1}\right)$
mediate results. Perform as $2-0.2 \div 1.1-5 \times 1-2-0 \div 8-1$ -2-5. Divide: Set hln on D2-0-2. Bring C1-1-5 under hln In. Multioly: Move hin to C9-2.5. Read under C81n-0 unde ANS: 24.1 (See also Sec. VII.)

VI. PROPORTIONS ON THE SLIDE RULE

. PRINCIPLE. Any pair of numbers set opposite each other on the and D (or $C F$ and $D F$) scales are in the same proportion entire length of numbers found opposite each other along the 1 to 2 (written also $1 / 2$ or $1: 2$) ;ead over $D 2$, the proportio D4, C3 opposite D6, etc.
. FORMATION OF PROPORTIONS. A whole number may be divided num. (denom.) of one ratio $6 / 1=2.6 / x$ Any factor in the (num.) of the other. Ex: $6=\frac{2.4 \times 9.4}{x}$ solve as $\frac{6}{9.4}=\frac{2.4}{x}$ or $\frac{x}{2.4}=\frac{9.4}{6} ;$ et
C. MULTIPLE PROPORTIONS. Ex: $\frac{.0202}{182}=\frac{x}{3}=\frac{4.5}{y} \frac{\text { (Set nums on C) }}{(\text { Set }}$ $\mathrm{AA}: x=\left(2 \times 10^{-2}\right) \times\left(3 \times 100^{-1}\right) \div\left(2 \times 10^{-1}\right)=3 \times 10^{-2}=$
$03 ; y=(5) \times\left(2 \times 10^{-1}\right) \div\left(2 \times 10^{-2}\right)=5 \times 10^{1}=50$ SRO $03 ; y=(5) \times\left(2 \times 10^{-1}\right) \div\left(2 \times 10^{-2}\right)=5 \times 10^{1}=50$. SRO
Set $C 2-0-2$ over D1-8-2. Move hin to D3. read C3-3-3. Move Set C2-0-2 over D1-8-2. Move hin to D3; read C3-3
hin to $C 4-5 ;$ read $D 4-0.5$. ANS: $x=.0333 ; y=40.5$

VII. FOLDED SCALES

a scales. The $C F$, a folded C scale is on the slide; the $D F$,
 PRINCIPIE, Operations performed left ends are labeled π. imultaneously berations performed on the C and D scales a APPLICATIONS
When numbers can not be conveniently matched because of their position on the C and D scales, the operation
can be transferred to the folded scales. The calculation can either be completed on the folded scales or returned to the C and D cales at will. Nore: When the answer is to be found under an index, it can be read under either the $C F$ or C indices; but when the answer is to be found under the hairline, it must be read on the
scale concerned. Ex: $(18 \div 4) \times 11$. AA: $(20 \div 4) \times 10=50$. SRO: Divide: Over D1-8 set C4; quotient is then under $R \mathrm{Cl}$ a D4-5. Multiply: Move hairline to C1-1; since $1-1$ is off scale, it would be necessary to switch $L C 1$ over $4-5$ to bring $1-1$ back on scale. Instead, note that $D F 4-5$ is over $C F 1$. Then, merely move
hln to $C F 1-1$ and read under hln, $D F 4-9-5$. ANS: 49.5

π

N on $D F$ Fx: Opposite 3 on D read $3 \pi=9.42$ on $D F$.
 (on $D F$) $=\pi \times$ diameter (on D); diameter (on D) $=$ circum ference (on $D F$) $/ \pi$.
VIII. RECIPROCAL (or INVERSE) SCALES
A. SCAiIS. The $C I$, on the slide, is an inverted C scale, and reads
from right to left. The $C I F$ (above the $C I$) is a folded $C I$ scale having a single index in the center of the scale.

Properties. Division by N can be replaced by multiplication
by $1 / \mathrm{N} . \mathrm{a} \div \mathrm{N}=\mathrm{a} \times 1 / \mathrm{N}$. Ex: $6 \div 3=6 \times 1 / 3=2 \mathrm{Multi}-$ by $1 / \mathrm{N} . \mathrm{a} \div \mathrm{N}=\mathrm{a} \times 1 / \mathrm{N}$. Ex: $6 \div 3=6 \times 1 / 3=2 \mathrm{Multi}$
plication by N can be replaced by division by $1 / \mathrm{N}$. a $\times \mathrm{N}=$ plication by N can be replaced by divi
$a \div 1 / \mathrm{N}$. Ex: $4 \times 2=4 \div 1 / 2=8$
C. USING THE RECIPROCAL SCALES

To obtain a reciprocal. SRO, Set N on scalc C under the
hairline, read $1 / \mathrm{N}$ on the scale $C I$. If N is on the $C F, 1 / \mathrm{N}$ is read from the CIF scale. Ex: Find $1 / 246$ AA: $1 / 246 \rightarrow 1 / 200=1 / 2 \times$ $10^{-2}=.5 \times 10^{-2}=.005$ SRO Set $C 2-4-6$ under hiln and rea
$C I 4-0-6$ ANS: 0.00406 To reduce slide 0.0406
To reduce slide motions in mult. and div. when factors
re widely separated. Remember: When using the CI answers are widely separated. Remember: When using the $C Y$ answers
are read on $D ;$ with the $C I F$, answers are read on the $D F$. Ex:
$12 \div 7.5$ Perform as 12×7.5^{-1} SRO: Set $L C 1$ over $D 1-2$. $12 \div 7.5$ Perform as 12×7.5^{-1} SRO: Set LC1 over D1-2
Move hin to CI7-5. Read under hln, D1-6. ANS: 1.6 Ex: $12 \times$ 9.1 Perform as $12 \div 9.1^{-1}$ SRO: Set hln over D1-2. Bring CI9-1
under hln. Read under RC1, D1-0-9-2. ANS: 109.2 NOTE: $12 \times$ under hln. Read under $R C 1$, D1-0.9-2. ANS: 109.2 NOTE: 1
9.1 could also have been calculated with the $C F$ and $D F$.
To simplify combined operations by permitting
To simplify combined operations by permitting com plete alternation of mult. and div. operations. NOTF: The
proficient use of the CI and CIF scales is of fundamental im portance in fast computation. Ex: $2.1 \times 14 \times 6.6 \div 0.073$
AA: $(2 \times 10 \times 7) \div\left(7 \times 10^{-2}\right)=140 \div 7 \times 10^{-2}=20 \times$
$10^{2}=2000$ SRO: Perform as $2-1 \times 1.4 \div 6-6^{-1} \times 7-3^{-1} \times$ Multiply: Set LCl over D2.1, move hln to C1.4. Divide: Bring
CI6-6 under hln. Multiply: Set hln on CI7-3. Read under hln, D2-6-6. ANS: 2660
IX. COMBINED OPERATIONS. FOLDED AND INVERSE SCALES
NOTE: With the combined use of folded and inverse scales, a mini NOTE: With the combined use of folded and inverse scales, a mini
mum number of slide and hin shifts is required. Ex: $2 \times 1.4 \times$ $6.2 \times 7 \times 0.51 \mathrm{AA}: 2 \times 1 \times 6 \times 7 \times\left(5 \times 10^{-1}\right)=42$ SRO
Perform as $2 \times 1.4 \div 6.2^{-1} \times 7 \div 0.51^{-1}$ Multiply: Set $L C 1$ Perform as $2 \times 1.4 \div 6.2^{-1} \times 7 \div 0.51-$ Multiply : Set LC
on D2, hln on C1-4. Divide: Bring CI6.2 under hln. Multiply
Since C7 is off scalc, set hln on CF7. Divide: Bring CIF5-1 unde Since C7 is off scale, set hln on CF7. Divide: Bring CIF5-1 under
hln. Read under CF index, DF6-2. ANS: 62 Ex: $6.04 \times .051 \times$ hin. Read under CF index, DF6-2. ANS: 62 Ex: $6.04 \times .051 \times$
$86 \div 2.64 \mathrm{AA}: 6 \times\left(5 \times 10^{-2} \times 8 \times 10 \div 2=12\right.$ SRO: Per
form as $6.04 \times .051 \div 86^{-1} \times 2.64^{-1}$ Multiply: Set $L C 1$ at form as $6.04 \times .051 \div 86^{-1} \times 2.64^{-1}$ Multiply: Set LC1 a
D6.0.4, hln on C5-1. Divide: Bring CI8-6 under hin. Multiply
Set hln on CIF2-6.4. Read under hln, DF1-0-0.
X. SQUARES. A. SCALES USED. D and C with the A and B (or $\sqrt{ }$
scales. The A on the body and B on the slide each contain two scales, similar to, but $1 / 2$ the length of the D. [Two full-lengt $\sqrt{-}$ scales may replace the A and B.]
B. SROO $\mathrm{N} \rightarrow \mathrm{N}^{2}$. Set hairline over N on D scale and read N^{2} under
hairline on A scale (or set hairline over N on C scale and read N^{2} under hairline on B scale). Ex: 3^{3} SRO: Set hin over $D 3$, read under hin, A9. ANS: 9 Ex: $(41)^{2}$ AA: $\left(4 \times 10^{1}\right)^{2}=16 \times 10^{2}=$
1600 SRO: $:=$ $(.115)^{2}$ AA: $\left(1 \times 10^{-1}\right)^{2}=1 \times 10^{-2}=.01$ SRO: hln on D1-1-5
read under hln, A1.3-2. ANS: 0.0132 Ex: $(613)^{2}$ AA: $\left(6 \times 10^{2}\right)$ read under hin, A1.3-2. ANS: 0.0132 Ex: $(613)^{-2}$ AA: $\left(6 \times 10^{2}\right)$
$=36 \times 10^{4}=360,000$ SRO: hln on D6-1-3; read under hln A3-7-6. ANS: 376,000. C. SRO: Set hairline on N on $\sqrt{ }$ scale. Read N ${ }^{2}$ on D. Ex:
D3-7.2. ANS: 37.2
XI. CUBES. A. SCALES USED. The D with K for $\sqrt[3]{ }$] scales. The K on the body is composed of three scales, similar to, but each $1 / 3$ the length of the D. [Three full-length $\sqrt[3]{ }$ scales may replace the K.]
B. SRO: $\mathrm{N} \rightarrow \mathrm{N}^{3}$. Set hairline over N on D scale; read N^{3} under hairline on K scale. Ex: 2^{3} SRO: Set hln over $D 2$; read under hln, K8. ANS: 8 Ex: $(0.117)^{3}$ AA: $(0.117)^{3}=\left(1 \times 10^{-1}\right)^{3}=$
.001 SRO: hln on D1-1-7, read under hin, K1-6-1 ANS: 00161 XII. SQUARE ROOTS. A. SCALES USED. Same as for squares.
B. FORM OF N. Must have either one or two digits left of the d.p. Otherwise, re-write N with an even power of ten
(10. -4, 2,0,2,4..) such that one or two digits are placed left of $\left(10 \cdot-4,2,0,2,1 \cdot{ }^{\prime}\right)$ such that one or two digits are placed left of
the d.p. in the multiplier. Then, take the square root of this power of ten. Ex: $\sqrt{400}=\sqrt{4 \times 10^{2}}=\sqrt{4} \times 10$. Ex: $\sqrt{0.00225}=$
$\sqrt{22.5 \times 10^{-4}}=\sqrt{22.5} \times 10^{-2}$. The square root of the multi$\sqrt{22.5} \times 10^{-4}$
plier is found on the slide rule as follows.
plier is found on the slide rule as follows.
c. SRO: $N \rightarrow \sqrt{N}$. Set the hairline over N located on the
proper section of the A or B scales as shown:

No. of digits left of the d.p. in the multiplier	1	2
Root location on section of A or B scale	left (1st)	right (2nd)

Read \sqrt{N} under the hairline on the D scale if N is set on A (or the C scale is N is set on B). D.SRO: Set hairline on N on D Read \sqrt{N} on upp
agits left of the d.p.
E. DECIMAL POINT LOCATION.
digit of the number rion. Always place the d.p. after the first root is multiplied by a power of ten, move the d.p. the indicated
ring root is multiplied by a power of ten, move the d.p. the indicated
number of places. Ex: $\sqrt{900}$ Form: $\sqrt{900}=\sqrt{9 \times 10^{2}}=1$ $\sqrt{9} \times 10^{1}$ SRO: hln on $A 9$ (left section). Read under hin D3-0-0 D.P.: 3.0×10^{1} ANS: 30 Ex: $\sqrt{25}$ Form: $\sqrt{25}$ is already in
the proper form. SRO: Set hln on A2-5 (right section). Read the proper form. SRO: Set hln on A2-5 (right section). Read
underhln, $D 5-0$-0. D.P.: 5.0 ANS: 5.0 Ex: $\sqrt{415}=\sqrt{4.15 \times 10^{2}}$ $=\sqrt{4.15} \times 10^{1}$ SRO: Set hln on A4-1-5 (left section). Read under hin, D2-0.4. D.P.: 2.04×10^{1} ANS: $20.4 \mathrm{Ex}: \sqrt{0.00365}=$ $\sqrt{36.5 \times 10^{-4}}=\sqrt{36.5} \times 10^{-2}$ SRO: Set hln on A3-6-5 (right
section). Read under hin, D6-0-4. D.P.: 6.04×10^{-2} ANS: 0.0604 section). Read under hin, D6-0-4. D.P.: 6.04×10^{-2} ANS: 0.0604
$[$ Ex: $\sqrt{52.4}$ SRO: Set hln on D5-2.4; read $7-2-4$ on lower $\sqrt{ }$ $\left[\begin{array}{ll}{[\text { Ex: }} & \sqrt{52.4} \\ \text { scale. ANS: } & \text { SRO } \\ \text { 7.24]. }\end{array}\right.$.
XIII. CUBE ROOTS. A. SCALES USED. Same as for cubes.
B. FORM OF N. Must have either one B. FORM OF N. Must have either one, two, or three digits to the
left of the d.p. Otherwise, rewrite N with a power of ten left of the d.p. Otherwise, rewrite N with a power of ten
that is a multiple of three $\left(10^{*} \cdots-6 .-3,0,3.6 ..\right)$ such that one, two or three digits are placed to the left of the d.p. in the multi plier.Then, take the cube root of this power of ten. Ex: $\sqrt[3]{27000}=$
$\sqrt[3]{27 \times 10^{3}}=\sqrt{27} \times 10^{1} ; \sqrt[3]{0000157}=\sqrt[3]{15.7 \times 10^{-6}}$ $\sqrt[2]{15.7} \times 10^{-2}$. The c
slide rule as follows.
c. SRO: $N \rightarrow \sqrt[3]{N} \quad$ Set the hairline over N on the proper section of the K scale as shown:

Digits left of the d.p.in the multiplier	1	2	3
left	$\frac{2}{\text { middle }}$	right	
$(3 \mathrm{l}$			

Root location on section of K scale	(1st)	(2nd)	(3rd)

Read $\sqrt[3]{\mathrm{N}}$ underthe hairline on the D scale. D. SRO: SetNon D
Read $\sqrt[2]{\mathrm{N}}$ on upper, middle or lower $\sqrt[3]{ }$ scale if N has one Read $\sqrt[3]{N}$ on upper, middle or two, or three digits left of the d.p. Always place the d.p.
E. THE LOCATION OF THE DECIMAL POINT. Aler fter the first digit of the number read from the slide rule. d.p. the indicated number of places. Ex: $\sqrt[3]{4150}$ Form: $\sqrt[3]{4150}=$ $\sqrt[3]{4.15 \times 10^{3}}=\sqrt[3]{4.15} \times 10^{1}$. SRO: Set hairline on $K 4-1-5$ (left section). Read under hin, D1-6.0.5. D.P.: 1.605×10^{1} ANS 16.05 Ex: $\sqrt[3]{0.000068}$ Form: $\sqrt[1]{0.000068}=\sqrt[3]{68.0 \times 10^{-6}}=$ $\sqrt[2]{68.0} \times 10^{-2}$. SRO: Set hin on K6-8-0 (middle section). Read
under hin, $D 4-0.8$. D.P.: $4.08 \times 10^{-2}=0.0408$. [Ex: $\sqrt[2]{47.3}$ under hin, D4-0.8. D.P.: $4.08 \times 10^{-2}=0.0408$. [Ex: $\sqrt[2]{47.3}$
SRO: Set hin on D4-7-3; read $3-6-1-5$ on middle $\sqrt[3]{ }$ scale. RO: Set h1
ANS: 3.615]
XIV. COMBINED OPERATIONS: SQUARES OR SQUARE ROOTS These problems can be solved without first finding the re quired roots or powers using the following methods
A. SQUARE ROOTS. Write all roots in the proper form (see XII:B) Perform the mult. and div. operations in the usual manner o the scales previously described but when the square root of
number N is needed:
on the C (moving) scale, set the number N is needed: on the C (moving) scale, set the
line over N on the proper section of the B (moving) scale; the D (fixed) scale, set the hairline over N on the proper of the A (fixed) scale. Ex: $2 \times \sqrt{9}$ SRO: Set $L C 1$ at $D 2$. Since the under hln, D6. ANS: 6 Ex: $\sqrt{16}$ hin on $B 9$ (left section). Rea quired on the D scale set hln on A1-6 (right section). Bring C under hin. Read under $L C 1, D 2$. ANS: 2 Ex: $2.06 \times \sqrt{.062}$ $\sqrt{916}$. Form: $2.06 \times \sqrt{6.2} \times 10^{-1} \div \sqrt{9.16} \times 10^{1}$. AA: $2 \times$
$\left(20^{-1}\right) \div\left(3 \times 10^{1} \cong=01\right.$ SRO: Set $L C 1$ at $D 2-0-6$. Se In over $B 6.2$ (left section). Bring $B 9-1-6$ (left section) unde \ln. Read under $L \mathrm{Cl} 1, D 1-6-9-5$. ANS: 0.01695
B. SQUARES. Mult. and div. may be performed on the A and B
scales exactly as on the C and D scales. When the number N is needed: on the B (moving) scale, set the hair ine over N on the C (moving) scale; on the A (fixed) scale set the hairline over N on the D (fixed) scale. Ex: 2×3^{2} SRO Set $L B 1$ at $A 2$. Set hln on C3. Read under hin, A1-8. ANS: 1 Ex: $6^{2} \div 4$ SRO: Set hln on $D 6$. Bring $B 4$ under hln. Read
under $B 1, A 9$. ANS: 9 Ex: $(4.1)^{2} \div(6.8)^{2} \times 2$ AA: $20 \div-1$. under $B 1, A 9$. ANS: $9 \mathrm{Ex}:(4.1)^{2} \div(6.8)^{2} \times 2$ AA
$50 \times 2=0.800$ SRO: Set hln on $D 4-1$. Bring C6-8 und
Set hln on $B 2$ and read under hin A7-2-7. ANS: 0.727 et hin on $B 2$ and read under hin $A 7-2-7$. ANS: 0.727
in Sec. A, but compute the squares as a repeated product (se ec. III:E). Ex: $6 \times \sqrt{9} \times 2^{2}$ performed as $6 \times \sqrt{9} \times 2 \times 2$ XV. LOGARITHMS. A. SCALES USED. The L and D both on the body The L scale has eleven primary marks labeled, $0,0.1,0.2,0.3$ ndary and tertiary divisions is similar to the other scales. B. COMPUUING LOGS. To determine the characteristic, C
Write N in powers of ten placing one digit to the left of the d.p Write N in powers of ten placing one digit to the left of the d.p. of the multiplier. $\mathrm{C}=$ the value of the exponent.
To determine the mantissa, M: SRO: Set the hairline
ver N on D scale, read M under the hairline on L scale. Ex $\log 36 ; \mathrm{C}: 36=3.6 \times 10^{1} ; \mathrm{C}=+1 . \mathrm{M}$: Set hairline on $D 3-6$ read $\mathrm{M}=0.556$
r
$0.0622 ; \mathrm{C}: .0622=6.22 \times 10^{-2} ; \mathrm{C}=1+.556=1.256$ Ex: $=1 \mathrm{M}$: Set hairline on $D 6.2-2 ;$ read $\mathrm{M}=0.794$ on L. ANS: $\log 0.0622=-2+0.794$ written as $8.794-10$ or $\overline{2} .794$.
C. ANTLIOGS. Given the logarithm of N, find N. SRO: Set the
mantissa on L, read N on D. D.P. location: Place the mantissa on L, read N on D. D.P. location: Place the d.p. to
the right of the first digit read from the slide rule. Convert the the right of the first digit read from the slide rule. Convert th
characteristic to a power of ten then move the d.p. the indicated number of places. Ex: Given log $\mathrm{N}=9.583-10$ find N . SRO $9-10=-1 ; \mathrm{N}=3.83 \times 10^{-1}=0.383$
XVI. TRIGONOMETRIC FUNCTIONS. A. SCALES. The S scale for
sines and cosines; the T scale for tangents (or cotangents) and nes and cosines; the T scale for tangents (or cotangents) an Cie siding The scails sine or tangent of small angle
READING THE SCALES
Angles ($($), measured in degrees, are indicated by the num ngles associated with the numbered marks: θ (values of θ in crease from left to right) and ($90^{\circ}-\theta$); values of $\left(90^{\circ}-\theta\right)$ increase from right to left and are sometimes printed in red.
Ex: On the S scale, mark $70 \mid 20$ represents both $\theta=20^{\circ}$ and Ex: On the S scal
$\left(90^{\circ}-\theta\right)=70^{\circ}$.
$\left.90^{\circ}-\theta\right)=70^{\circ}$.
Angles not numbered on the scale are positioned by count ng the number of primary marks in the space between labele abeled angles 20° and 25°.
Fractions of angles are located between primary marks and nay be expressed either in tenths of degrees or minutes (60 min . $=1$ deg.) depending upon the make of the slide rule.

	DEGREES			MINUTES		
Number of marks	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{9}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{5}$
Number of spaces	2	5	10	2	3	6
Value of space	0.5	0.2	0.1	30^{\prime}	20^{\prime}	10^{\prime}

$\left.\frac{\theta}{0.57^{\circ} \text { to } 5.7^{\circ}} \right\rvert\, \mathrm{ST}$ SIN θ
SRO Set hin on θ on scale $S T$ read the value of $\sin \theta$ under hln on scale C.D.P.: Place 1 zero b ween the d.p. and the first digit. Ex: $\sin 1.62^{\circ}$. SRO: Set hin on 1.62° on $S T$, read $D 2-8-2$. ANS: 0.0282 (Ex: $\operatorname{Sin} 3$
in on $3^{\circ} 14^{\prime}$ on $S T$; read C5-6-4. ANS: 0.0564)

6-4. ANS: 0.0564)
NOTE: Use the numbers on the S
Nort: Use the numbers on the
scale which represent θ (usually to the right of the numbere
marks). The scale reads from 5.7° on the left, to 90° on the right. The single mark between 80° and 90° represents 85°. SRO: Set Thn on θ on S, read value of $\sin \theta$ under hin on C. D.P.: Place to
the left of the first digit. Ex $\sin 20^{\circ}$.SRO: Set 20° on S at $70 \mid 20$, read C3-4-2. ANS: 0.342 Ex: $\sin 22.3^{\circ}\left(22^{\circ} 20^{\prime}\right)$ SRO: Set hln on $22.3^{\circ}\left(22^{\circ} 20^{\prime}\right)$ on S, read C3-8-0. ANS: 0.380 NOTE: $\sin 81^{\circ}$ is $0.988 ; \sin 85^{\circ}$ is 0.996 ; $\sin 89^{\circ}$ is 0.999 .

\qquad 84.3° to 0° NOFE: Since $\sin \theta=\cos \left(90^{\circ}-\theta\right)$, | $\cos \theta$ | 0.1 to 1.0 | C | $\begin{array}{l}\text { the graduations on the } S \text { scale to } \\ \text { the left of the numbered marks, }\end{array}$ |
| :---: | :---: | :---: | :---: | representing $\left(90^{\circ}-\theta\right)$, are used for the cosines of the angles.

The cosine scale reads from 0° on the right to 84.3° on the left. The cosine scale reads from 0° on the right to 84.3 on the left, and also $\left(90^{\circ}-5^{\circ}\right)=85^{\circ}$ for the sine). SRO: Set hin on θ on S, read value of the cos under hln on C. D.P.: Place to the left of first digit. Ex: cos 65°. SRO: Set hln on 65° on S at $65 \mid 25$ ead C4-2-2. ANS: 0.422 Ex: cos 66.4°. SRO: Set hln on 66.4° on S, read C4-0-1. ANS: 0.401 Ex: cos 4°. SRO: Set hln on 4°
on S by dividing the space between 0° and 5° by eye, read C9.9-7 on S by dividi
ANS: 0.997

$\theta\left[89.4^{\circ}\right.$ to 84.3° ST $\quad \begin{array}{l}\text { SRO: Using the relationship } \sin \theta \\ =\cos \left(90^{\circ}-\theta\right)\end{array}$ | $\cos \theta$ | .01 to 0.1 | C |
| :--- | :--- | :--- |
| scale $S T$; read \cos value on \bar{C}. D.P. | | | Place one zero between the d.p. and the first digit. Ex: cos 86°

SRO: Set $\left(90^{\circ}-86^{\circ}\right)$ or 4° on $S T$, read C6-9-7. ANS: 0.0697

\qquad $\theta \quad 0.57^{\circ}$ to $5.7^{\circ} \left\lvert\, \mathrm{ST} \quad \begin{aligned} & \text { SRO: Set } \theta \text { on } S T \text {, read value of } \\ & \tan \theta \text { from the } C \text { scale } \mathrm{D} P \text {. }\end{aligned}\right.$	$\tan \theta$	$\begin{array}{c}\tan \theta \text { from the } C \text { scale. D.P.: Place } \\ \text { one } z \text { ero between the d.p. and the }\end{array}$
0.01 to 0.1	C	first digit. E

ANS: 0.0611

θ	5.7° to 45°	T
$\tan \theta$	0.1 to 1.0	C

Nork: Use the graduation on the T cads from 5.7° on the left marks, which represent θ. The scale ead the value of $\tan \theta$ on scale C D D. right. SRO: Set θ on T, rst digit. Ex: $\tan 11^{\circ}$ SRO: Set 11° on T at $79 \mid 11$, read C1-9.4 ANS: 0.194 Ex: $\tan 11.7^{\circ}\left(11^{\circ} 40^{\prime}\right)$ SRO: Set $11.7^{\circ}\left(11^{\circ} 40^{\prime}\right)$ on \begin{tabular}{|c|c|c|c|c|c|}
\hlineθ \& 45° to 84.3° \& TeTE: Use the graduations on the T

\hline

$\tan \theta$ \& 1.0 to 10 \& $\frac{\mathrm{Cl}}{\mathrm{CI}}$ \& $\begin{array}{l}\text { scale to the left of the numbered } \\
\text { marks, which represent }\left(90^{\circ}-\theta\right)\end{array}$
\end{tabular} This scale reads from 45° on the right, to 84.3° on the left. SRO Using the relationship $\tan \theta=1 \div \tan \left(90^{\circ}-\theta\right)$, set θ on T and read the value of $\tan \theta$ from the $C I$ scalc. If there is no $C I$ scale, use $\tan \theta=1 \div \tan \left(90^{\circ}-\theta\right)$. D.P.: Place after the first digit,

Ex: $\tan 55^{\circ} . \mathrm{SRO}:$ Set 55° on T at 55 an 1.43 Ex: $\tan 52.5^{\circ}$ SRO: Set 52.5° on T, read CI1.3-0.3. 1.43 Ex: ta
ANS: 1.303

$\tan \theta$	10 to 100	CI
the value of $\tan \theta$ from the $\left.C I 0^{\circ}-\theta\right)$ scale. D.P.:Place after and read		
second		

D. COMBINED TRIGONOMETRIC OPERATIONS. Multiplication and division involving trigonometric functions may be performed with out recording the value of these functions by using the S, T, and $S T$ scales exactly as the C scale. This is possible since the angles
on the S, T, and $S T$ scales are in line with the corresponding on the S, T, and $S T$ scales are in line with the corresponding
trigonometric functions of these angles on the C scale and the right and left indices on the trigonometric scales are in line with the indices on the C scale. Ex: $2.3 \times \sin 8^{\circ}$ AA: $\sin 8^{\circ} \cong 0.1$
$2 \times \sin 8^{\circ} \cong 0.2$ SRO: Sct $L C 1$ on $D 2$. Set hln on $S 8^{\circ}$. $2 \times \sin 8^{\circ} \widehat{=} 0.2$ SRO: Set $L C 1$ on $D 2-3$. Set hin on $S 8^{\circ}$.
Read $D 3-2$ under hln. ANS: 0.32 Ex: $0.315 \div \tan 39^{\circ}$ AA: \tan $39^{\circ}=1: 0.3 \div \tan 39^{\circ}=0.3$ SRO: Set hin on D3-1-5. Bring $\left(\cos 58^{\circ}\right)^{2} \div 0.132 \mathrm{AA} \cdot \cos 58^{\circ}=0.5,6 \times(0.5)^{2} \times 1.38 \times$ $\left(\cos 58^{\circ}\right)^{2} \div 0.132$ AA: $\cos 58^{\circ}=0.5 ; 6 \times(0.5)^{2} \div \cdot 1=15$
SRO: Use A and B scales. (See Section XIV: B.) Set RB1 at A6-3-8. Set hln on $S 58^{\circ}$ (cosine marking). Bring B1-3-2 under hin. Read A1-3-6 on B index. ANS: 13.6
XVII. LOG LOG SCALES. A. DESCRIPTION. The scales labeled $L L 1$,
$L L 2, L L 3$ cover numbers >1. Numbers <1 are La, $L L 3$ cover numbers >1. Numbers <1 are on the reciproca cales which may be labeled $L L 01, L L 02$, etc; or $L L 1-, L L 2-$,
tc.; $L L / 1, L L / 2$, ctc.; or $L L 0$ and $L L 00$. All scales are read with the d.p. in the printed position.
B. APPLICATIONS. To find natural logarithms ($\log _{\mathrm{e}} \mathrm{N}$ or $\ln \mathrm{N}$) SRO: Set hairline on N on appropriate $L L$ scale. Read \log e nder hairline on D [or $D F / M$ scale]. D.P.: Located by the exponent range [or first digit position] of the $L L$ scale used: N
on $L L 1, \log _{e} \mathrm{~N}$ on D has two decimal places $(.01 \rightarrow 0.1$ or 0.0 D$)$; on $L L 2$, one decimal place; on $L L 3$, one digit left of the d.p. in $\log _{\mathrm{o}} N$. Ex: $\log _{\mathrm{c}} 12.2$ Set hln on 12.2 on $L L 3$. Read under hin D or $D F / M] 2-5.0$. ANS: 2.50 Ex: $\log _{\text {e }} 0.98$ Set hln on 0.98 on $L 01$ [or $L L 1-$]. Read under h1n D [or $D F / M]$ 2-0-2. ANS: Since exponent range on $L L 01$ is -0.01 to -0.1 [or on $L L 1-$, first digit position is $-0.0 \mathrm{D}]$ answer is -0.0202 NOTE: On slide rules having nly the $L L 0$, and $L L 00$, read $\log _{e} \mathrm{~N}$ on the A instead of the D
scale. D.P.: N on $L L 0$, use $\mathrm{AA}=\mathrm{N}-1 ; \mathrm{N}$ on $L L 00$, left half of A scale is - $0 . \mathrm{D}$: right half is $-\mathrm{D} .0 \mathrm{Ex}: \log _{e} 0.97 \mathrm{Set}$ hln on 0.97 on $L L 0$. Read under hln $A 3-0-5$. AA: $0.97-1=-0.03$ ANS: -0.0305 Ex: $\log _{e} 0.50$ Set hln on 0.50 on LLOO Read under in 6-9.5 on left half of A. ANS• - 0.695
To find non-integer powers and roots. SRO $\mathrm{N}^{x}=\mathrm{P}$ or $\sqrt[x]{\mathrm{N}}=\mathrm{Q}$. Calculate AA. Set hairline on N on appropriate $L L$ scale, then set a C index under the hairline. Move hairline to x on C scale for powers, to x on $C I$ scale for roots. Read
under hairline on appropriate $L L$ scale as indicated by the AA. Ex: 4^{2} Set hln on 4 on $L L 3$. Set $L C 1$ under hln. Set hin on $C 2$ Ex: 4^{2} Set hin on 4 on $L L 3$. Set $L C 1$ under hin. Set hin on C2. Set hln on 6.2 or $L L 3$. Set $L C 1$ under hln. Move hln to C2-1; read 0.0127 under hin on $L L 03$, [or $L L / 3$, or $L L 3-$]. Ex: $\sqrt[41]{30}$. $\sqrt[1]{30}=2.3$. SRO: Set hin on 3 on $L L 3$. Set $L C 1$ under hln. Move hin to CI4-1. ANS: Read 2.39 under hin on $L L 2$. Nork: On rules
having only two reciprocal scales $[L L O, L L O O \mid$, use instead of having only two reciprocal scales $[L L 0, L L 00]$, use instead of
scale C, scale B (or A) with the correct half to employ deterscale C, scale B (or A) with the correct half to employ deter-
mined by the AA. Furthermore, negative powers of N can only mined by the AA. Furthermore, negative powers of
be solved by first evaluating the positive reciprocal.
ee solved by first evaluating the positive reciprocal.
Ex: $62^{-2,1}=1 /(6.2)^{2 .-1}=(0.162)^{2.1} \mathrm{AA}:(0.16)^{2}=0.026$. SRO: Set hln on 0.162 on $L L 0$. Set central B1 under hln. Set hin on $2-1$ on.
hin on $L L 00$.

